Ma Junlong, Yang Siyi, Yang Zhihao, He Ziliang, Du Zhanhong
The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Sensors (Basel). 2025 Jul 15;25(14):4412. doi: 10.3390/s25144412.
As critical interfaces bridging biological systems and electronic devices, the performance of bioelectrodes directly determines the sensitivity, selectivity, and reliability of biosensors. Recent advancements in functional nanomaterials (e.g., carbon nanomaterials, metallic nanoparticles, 2D materials) have substantially enhanced the application potential of bioelectrodes in disease detection, metabolic monitoring, and early diagnosis through strategic material selection, structural engineering, interface modification, and antifouling treatment. This review systematically examines the latest progress in nanomaterial-enabled interface design of bioelectrodes, with particular emphasis on performance enhancements in electrophysiological/electrochemical signal acquisition and multimodal sensing technologies. We comprehensively analyze cutting-edge developments in dynamic metabolic parameter monitoring for chronic disease management, as well as emerging research on flexible, high-sensitivity electrode interfaces for early disease diagnosis. Furthermore, this work focused on persistent technical challenges regarding nanomaterial biocompatibility and long-term operational stability while providing forward-looking perspectives on their translational applications in wearable medical devices and personalized health management systems. The proposed framework offers actionable guidance for researchers in this interdisciplinary field.
作为连接生物系统和电子设备的关键界面,生物电极的性能直接决定了生物传感器的灵敏度、选择性和可靠性。功能纳米材料(如碳纳米材料、金属纳米颗粒、二维材料)的最新进展通过策略性的材料选择、结构工程、界面修饰和防污处理,极大地提高了生物电极在疾病检测、代谢监测和早期诊断中的应用潜力。本文系统地研究了基于纳米材料的生物电极界面设计的最新进展,特别强调了电生理/电化学信号采集和多模态传感技术方面的性能提升。我们全面分析了用于慢性病管理的动态代谢参数监测的前沿发展,以及用于早期疾病诊断的柔性、高灵敏度电极界面的新兴研究。此外,这项工作聚焦于纳米材料生物相容性和长期运行稳定性方面持续存在的技术挑战,同时对其在可穿戴医疗设备和个性化健康管理系统中的转化应用提供前瞻性观点。所提出的框架为该跨学科领域的研究人员提供了可操作的指导。