Suppr超能文献

用于蛋白质折叠模拟的遗传算法。

Genetic algorithms for protein folding simulations.

作者信息

Unger R, Moult J

机构信息

Center for Advanced Research in Biotechnology, University of Maryland, Rockville 20850.

出版信息

J Mol Biol. 1993 May 5;231(1):75-81. doi: 10.1006/jmbi.1993.1258.

Abstract

Genetic algorithms methods utilize the same optimization procedures as natural genetic evolution, in which a population is gradually improved by selection. We have developed a genetic algorithm search procedure suitable for use in protein folding simulations. A population of conformations of the polypeptide chain is maintained, and conformations are changed by mutation, in the form of conventional Monte Carlo steps, and crossovers in which parts of the polypeptide chain are interchanged between conformations. For folding on a simple two-dimensional lattice it is found that the genetic algorithm is dramatically superior to conventional Monte Carlo methods.

摘要

遗传算法方法采用与自然遗传进化相同的优化程序,即通过选择逐渐改进种群。我们开发了一种适用于蛋白质折叠模拟的遗传算法搜索程序。维持多肽链构象的种群,构象通过传统蒙特卡罗步骤形式的突变以及多肽链部分在构象间互换的交叉操作而改变。对于在简单二维晶格上的折叠,发现遗传算法明显优于传统蒙特卡罗方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验