Suppr超能文献

基于价值的保险设计:放射学实施的障碍。

Value-based insurance design: barriers to implementation in radiology.

机构信息

Department of Radiology, Division of Cardiothoracic Radiology, University of Michigan Medical Center, Ann Arbor, 48109-5302, USA.

出版信息

Acad Radiol. 2011 Sep;18(9):1115-22. doi: 10.1016/j.acra.2011.04.010. Epub 2011 Jun 15.

Abstract

Expensive and steadily rising health care costs without a concomitant increase in quality have generated a search for solutions to fund health care in the United States. Recent health care reforms and proposals on the agenda have spurred debate about alternative payment plans for health care. Much of the talk centers on imaging, which is a fast-growing and expensive component of health care. Value-based insurance design (VBID), a "clinically sensitive" means of sharing the cost of health care, has been proposed as a means to control the runaway costs of health care management including diagnostic testing. A corollary of pay-for-performance initiatives in which physician incentives are aligned with evidence-based medical practices, VBID seeks to increase patient incentives to comply with evidence-based health care consumption. We previously reviewed the principles of VBID and provided examples of VBID in practice using diabetes management as a model, as well as suggested some areas in diagnostic testing that lend themselves to VBID benefit design. In this article, we summarize the barriers to implementation and outline potential solutions, with particular regard to radiology.

摘要

不断上涨的医疗保健费用,且没有伴随质量的提高,这在美国引发了人们对医疗保健资金解决方案的探索。最近的医疗改革和议程上的提案引发了人们对医疗保健替代支付计划的争论。其中大部分讨论都集中在成像上,它是医疗保健中一个快速增长和昂贵的组成部分。基于价值的保险设计(VBID)是一种“临床敏感”的分担医疗保健费用的方式,被提议作为控制医疗保健管理包括诊断测试失控成本的一种手段。作为与基于证据的医疗实践相一致的医生激励措施的支付绩效举措的必然结果,VBID 旨在增加患者对基于证据的医疗保健消费的依从性。我们之前回顾了 VBID 的原则,并提供了 VBID 在实践中的应用示例,使用糖尿病管理作为模型,以及建议了一些适合 VBID 效益设计的诊断测试领域。在本文中,我们总结了实施的障碍,并概述了潜在的解决方案,特别是针对放射学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验