Suppr超能文献

综述论文:用于组织工程应用的导电聚合物领域的进展。

Review paper: progress in the field of conducting polymers for tissue engineering applications.

机构信息

Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania.

出版信息

J Biomater Appl. 2011 Jul;26(1):3-84. doi: 10.1177/0885328211402704. Epub 2011 Jun 16.

Abstract

This review focuses on one of the most exciting applications area of conjugated conducting polymers, which is tissue engineering. Strategies used for the biocompatibility improvement of this class of polymers (including biomolecules' entrapment or covalent grafting) and also the integrated novel technologies for smart scaffolds generation such as micropatterning, electrospinning, self-assembling are emphasized. These processing alternatives afford the electroconducting polymers nanostructures, the most appropriate forms of the materials that closely mimic the critical features of the natural extracellular matrix. Due to their capability to electronically control a range of physical and chemical properties, conducting polymers such as polyaniline, polypyrrole, and polythiophene and/or their derivatives and composites provide compatible substrates which promote cell growth, adhesion, and proliferation at the polymer-tissue interface through electrical stimulation. The activities of different types of cells on these materials are also presented in detail. Specific cell responses depend on polymers surface characteristics like roughness, surface free energy, topography, chemistry, charge, and other properties as electrical conductivity or mechanical actuation, which depend on the employed synthesis conditions. The biological functions of cells can be dramatically enhanced by biomaterials with controlled organizations at the nanometer scale and in the case of conducting polymers, by the electrical stimulation. The advantages of using biocompatible nanostructures of conducting polymers (nanofibers, nanotubes, nanoparticles, and nanofilaments) in tissue engineering are also highlighted.

摘要

这篇综述专注于共轭导电聚合物最令人兴奋的应用领域之一,即组织工程。强调了改善这类聚合物生物相容性的策略(包括生物分子的包埋或共价接枝),以及用于智能支架生成的集成新技术,如微图案化、静电纺丝、自组装。这些处理方法为导电聚合物提供了纳米结构,这是最适合的材料形式,可以模拟天然细胞外基质的关键特征。由于其能够电子控制一系列物理和化学性质,导电聚合物(如聚苯胺、聚吡咯和聚噻吩及其衍生物和复合材料)提供了兼容的基质,通过电刺激促进细胞在聚合物-组织界面处的生长、黏附和增殖。还详细介绍了不同类型的细胞在这些材料上的活性。特定的细胞反应取决于聚合物表面特性,如粗糙度、表面自由能、形貌、化学性质、电荷和其他特性,如导电性或机械致动性,这些特性取决于所采用的合成条件。通过控制纳米尺度的组织和在导电聚合物的情况下通过电刺激,可以显著增强细胞的生物功能。还强调了在组织工程中使用生物相容的导电聚合物纳米结构(纳米纤维、纳米管、纳米颗粒和纳米丝)的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验