Suppr超能文献

通过代谢物染料增强实现的二维和三维活细胞的非侵入性光声显微镜成像。

Noninvasive photoacoustic microscopy of living cells in two and three dimensions through enhancement by a metabolite dye.

机构信息

Department of Biomedical Engineering, Washington University, Saint Louis, MO 63130, USA.

出版信息

Angew Chem Int Ed Engl. 2011 Aug 1;50(32):7359-63. doi: 10.1002/anie.201101659. Epub 2011 Jun 16.

Abstract

Photoacoustic microscopy (PAM) is a powerful imaging modality that can generate high-resolution, three-dimensional (3D) images non-invasively. However, most types of cells cannot be imaged and quantified by PAM due to the lack of an absorption-based contrast mechanism. Here we demonstrate that this problem could be solved by employing 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT formazan), a cellular metabolite of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), as the contrast agent. The as-formed MTT formazan crystals inside the cells have a strong absorption in the spectral region of 500-700 nm, and are generally nontoxic. It could serve as a superb contrast agent for PAM in imaging various types of cells cultured on two-dimensional (2D) substrates and in 3D porous scaffolds. This contrast mechanism is general, and can be applied to essentially all types of metabolically active cells including stem cells and tumor cells, which would be very useful for a number of biological and biomedical applications.

摘要

光声显微镜(PAM)是一种强大的成像方式,可以非侵入性地生成高分辨率的三维(3D)图像。然而,由于缺乏基于吸收的对比机制,大多数类型的细胞无法通过 PAM 进行成像和定量。在这里,我们证明可以通过使用 1-(4,5-二甲基噻唑-2-基)-3,5-二苯基甲臜(MTT 甲臜)来解决这个问题,MTT 是 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑溴化物(MTT)的细胞代谢物。在细胞内形成的 MTT 甲臜晶体在 500-700nm 的光谱区域具有很强的吸收,并且通常是无毒的。它可以作为 PAM 在成像各种类型的细胞(包括二维(2D)基质上培养的细胞和 3D 多孔支架中的细胞)中的出色对比剂。这种对比机制是通用的,可以应用于包括干细胞和肿瘤细胞在内的基本上所有代谢活跃的细胞,这对于许多生物学和生物医学应用将非常有用。

相似文献

引用本文的文献

4
Photoacoustic imaging of 3D-printed vascular networks.三维打印血管网络的光声成像。
Biofabrication. 2022 Jan 24;14(2). doi: 10.1088/1758-5090/ac49d5.
6
Photoacoustic Imaging in Tissue Engineering and Regenerative Medicine.组织工程与再生医学中的光声成像。
Tissue Eng Part B Rev. 2020 Feb;26(1):79-102. doi: 10.1089/ten.TEB.2019.0296. Epub 2020 Jan 14.
8
Development of ultrasound bioprobe for biological imaging.超声生物探头的研制及其在生物成像中的应用。
Sci Adv. 2017 Oct 25;3(10):e1701176. doi: 10.1126/sciadv.1701176. eCollection 2017 Oct.
9
Imaging Biomaterial-Tissue Interactions.成像生物材料-组织相互作用。
Trends Biotechnol. 2018 Apr;36(4):403-414. doi: 10.1016/j.tibtech.2017.09.004. Epub 2017 Oct 17.
10
Inverse Opal Scaffolds and Their Biomedical Applications.反蛋白石支架及其生物医学应用。
Adv Mater. 2017 Sep;29(33). doi: 10.1002/adma.201701115. Epub 2017 Jun 26.

本文引用的文献

3
Integrated photoacoustic and fluorescence confocal microscopy.集成光声和荧光共聚焦显微镜。
IEEE Trans Biomed Eng. 2010 Oct;57(10):2576-8. doi: 10.1109/TBME.2010.2059026. Epub 2010 Jul 15.
6
Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons.金纳米棒近红外光声法检测前哨淋巴结。
Biomaterials. 2010 May;31(14):4088-93. doi: 10.1016/j.biomaterials.2010.01.136. Epub 2010 Feb 20.
9
Photoacoustic imaging of lacZ gene expression in vivo.体内lacZ基因表达的光声成像。
J Biomed Opt. 2007 Mar-Apr;12(2):020504. doi: 10.1117/1.2717531.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验