Fachbereich Physik und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, D-35032 Marburg, Germany.
J Chem Phys. 2011 Jun 14;134(22):224707. doi: 10.1063/1.3598957.
Chemical properties of epitaxially grown bimetallic layers may deviate substantially from the behavior of their constituents. Strain in conjunction with electronic effects due to the nearby interface represent the dominant contribution to this modification. One of the simplest surface processes to characterize reactivity of these substrates is the dissociative adsorption of an incoming homo-nuclear diatomic molecule. In this study, the adsorption of O(2) on various epitaxially grown Pt films on Ru(0001) has been investigated using infrared absorption spectroscopy and thermal desorption spectroscopy. Pt/Ru(0001) has been chosen as a model system to analyze the individual influences of lateral strain and of the residual substrate interaction on the energetics of a dissociative adsorption system. It is found that adsorption and dissociative sticking depends dramatically on Pt film thickness. Even though oxygen adsorption proceeds in a straightforward manner on Pt(111) and Ru(0001), molecular chemisorption of oxygen on Pt/Ru(0001) is entirely suppressed for the Pt/Ru(0001) monolayer. For two Pt layers chemisorbed molecular oxygen on Pt terraces is produced, albeit at a very slow rate; however, no (thermally induced) dissociation occurs. Only for Pt layer thicknesses N(Pt) ≥ 3 sticking gradually speeds up and annealing leads to dissociation of O(2), thereby approaching the behavior for oxygen adsorption on genuine Pt(111). For Pt monolayer films a novel state of chemisorbed O(2), most likely located at step edges of Pt monolayer islands is identified. This state is readily populated which precludes an activation barrier towards adsorption, in contrast to adsorption on terrace sites of the Pt/Ru(0001) monolayer.
外延生长的双金属层的化学性质可能与它们的组成部分有很大的不同。应变与附近界面的电子效应是导致这种修饰的主要因素。这些衬底反应性的最简单的表面过程之一是入射同核双原子分子的离解吸附。在这项研究中,使用红外吸收光谱和热脱附光谱研究了各种外延生长的 Pt 薄膜在 Ru(0001)上对 O(2)的吸附。Pt/Ru(0001)被选为模型体系,以分析横向应变和残余基底相互作用对离解吸附体系的能量的单独影响。结果发现,吸附和离解吸附的粘性强烈依赖于 Pt 薄膜的厚度。尽管 O(2)在 Pt(111)和 Ru(0001)上的吸附过程很直接,但在 Pt/Ru(0001)单层上,O(2)的分子化学吸附完全被抑制。对于两层 Pt,在 Pt 台地上产生了化学吸附的分子氧,尽管速度非常慢;然而,没有(热诱导)解离发生。只有当 Pt 层厚度 N(Pt)≥3 时,粘性才逐渐加快,并且退火导致 O(2)的解离,从而接近真正的 Pt(111)上的氧吸附行为。对于 Pt 单层薄膜,确定了一种化学吸附 O(2)的新状态,最有可能位于 Pt 单层岛的台阶边缘。这种状态很容易被占据,这与 Pt/Ru(0001)单层台地上的吸附相比,没有吸附的激活能垒。