Suppr超能文献

ADMIXTURE 算法在个体血统估计中的改进。

Enhancements to the ADMIXTURE algorithm for individual ancestry estimation.

机构信息

Department of Biomathematics, UCLA, Los Angeles, California, USA.

出版信息

BMC Bioinformatics. 2011 Jun 18;12:246. doi: 10.1186/1471-2105-12-246.

Abstract

BACKGROUND

The estimation of individual ancestry from genetic data has become essential to applied population genetics and genetic epidemiology. Software programs for calculating ancestry estimates have become essential tools in the geneticist's analytic arsenal.

RESULTS

Here we describe four enhancements to ADMIXTURE, a high-performance tool for estimating individual ancestries and population allele frequencies from SNP (single nucleotide polymorphism) data. First, ADMIXTURE can be used to estimate the number of underlying populations through cross-validation. Second, individuals of known ancestry can be exploited in supervised learning to yield more precise ancestry estimates. Third, by penalizing small admixture coefficients for each individual, one can encourage model parsimony, often yielding more interpretable results for small datasets or datasets with large numbers of ancestral populations. Finally, by exploiting multiple processors, large datasets can be analyzed even more rapidly.

CONCLUSIONS

The enhancements we have described make ADMIXTURE a more accurate, efficient, and versatile tool for ancestry estimation.

摘要

背景

从遗传数据中估计个体的祖先已经成为应用群体遗传学和遗传流行病学的必要条件。计算祖先估计的软件程序已成为遗传学家分析工具库中的重要工具。

结果

在这里,我们描述了 ADMIXTURE 的四个增强功能,ADMIXTURE 是一种从 SNP(单核苷酸多态性)数据中估计个体祖先和群体等位基因频率的高性能工具。首先,ADMIXTURE 可以通过交叉验证来估计潜在群体的数量。其次,可以利用具有已知祖先的个体进行有监督学习,以获得更准确的祖先估计。第三,通过对每个个体的小混合系数进行惩罚,可以鼓励模型简约,这通常为小型数据集或具有大量祖先群体的数据集生成更具可解释性的结果。最后,通过利用多个处理器,可以更快地分析大型数据集。

结论

我们所描述的增强功能使 ADMIXTURE 成为一种更准确、高效和通用的祖先估计工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f825/3146885/443df5c1560c/1471-2105-12-246-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验