Wanders Ronald J A, Komen Jasper, Ferdinandusse Sacha
Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
Biochim Biophys Acta. 2011 Sep;1811(9):498-507. doi: 10.1016/j.bbalip.2011.06.006. Epub 2011 Jun 13.
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid which cannot be beta-oxidized due to the presence of the first methyl group at the 3-position. Instead, phytanic acid undergoes alpha-oxidation to produce pristanic acid (2,6,10,14-tetramethylpentadecanoic acid) plus CO(2). Pristanic acid is a 2-methyl branched-chain fatty acid which can undergo beta-oxidation via sequential cycles of beta-oxidation in peroxisomes and mitochondria. The mechanism of alpha-oxidation has been resolved in recent years as reviewed in this paper, although some of the individual enzymatic steps remain to be identified. Furthermore, much has been learned in recent years about the permeability properties of the peroxisomal membrane with important consequences for the alpha-oxidation process. Finally, we present new data on the omega-oxidation of phytanic acid making use of a recently generated mouse model for Refsum disease in which the gene encoding phytanoyl-CoA 2-hydroxylase has been disrupted.
植烷酸(3,7,11,15-四甲基十六烷酸)是一种支链脂肪酸,由于在3位存在第一个甲基,它不能进行β-氧化。相反,植烷酸会进行α-氧化生成降植烷酸(2,6,10,14-四甲基十五烷酸)和二氧化碳。降植烷酸是一种2-甲基支链脂肪酸,它可以通过在过氧化物酶体和线粒体中依次进行β-氧化循环来进行β-氧化。尽管一些具体的酶促步骤仍有待确定,但本文综述了近年来α-氧化的机制已得到阐明。此外,近年来人们对过氧化物酶体膜的通透性特性有了很多了解,这对α-氧化过程有重要影响。最后,我们利用最近构建的一种Refsum病小鼠模型展示了关于植烷酸ω-氧化的新数据,在该模型中,编码植烷酰辅酶A 2-羟化酶的基因已被破坏。