Suppr超能文献

宿主细胞是弓形虫感染细胞液泡内网络中脂质主要来源的证据。

Evidence for host cells as the major contributor of lipids in the intravacuolar network of Toxoplasma-infected cells.

作者信息

Caffaro Carolina E, Boothroyd John C

机构信息

Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305-5124, USA.

出版信息

Eukaryot Cell. 2011 Aug;10(8):1095-9. doi: 10.1128/EC.00002-11. Epub 2011 Jun 17.

Abstract

The intracellular parasite Toxoplasma gondii develops inside a parasitophorous vacuole (PV) that derives from the host cell plasma membrane during invasion. Previous electron micrograph images have shown that the membrane of this vacuole undergoes an extraordinary remodeling with an extensive network of thin tubules and vesicles, the intravacuolar network (IVN), which fills the lumen of the PV. While dense granule proteins, secreted during and after invasion, are the main factors for the organization and tubulation of the network, little is known about the source of lipids used for this remodeling. By selectively labeling host cell or parasite membranes, we uncovered evidence that strongly supports the host cell as the primary, if not exclusive, source of lipids for parasite IVN remodeling. Fluorescence recovery after photobleaching (FRAP) microscopy experiments revealed that lipids are surprisingly dynamic within the parasitophorous vacuole and are continuously exchanged or replenished by the host cell. The results presented here suggest a new model for development of the parasitophorous vacuole whereby the host provides a continuous stream of lipids to support the growth and maturation of the PVM and IVN.

摘要

细胞内寄生虫刚地弓形虫在一个寄生泡(PV)内发育,该寄生泡在入侵过程中源自宿主细胞质膜。先前的电子显微镜图像显示,这个泡的膜经历了非凡的重塑,形成了一个由细管和囊泡组成的广泛网络,即泡内网络(IVN),它填充了PV的腔。虽然入侵期间和入侵后分泌的致密颗粒蛋白是该网络组织和形成管状结构的主要因素,但对于用于这种重塑的脂质来源知之甚少。通过选择性标记宿主细胞或寄生虫膜,我们发现了有力证据,强烈支持宿主细胞是寄生虫IVN重塑脂质的主要(如果不是唯一)来源。光漂白后荧光恢复(FRAP)显微镜实验表明,脂质在寄生泡内出人意料地具有动态性,并由宿主细胞不断交换或补充。此处呈现的结果提出了一种寄生泡发育的新模型,即宿主提供持续的脂质流以支持寄生泡膜(PVM)和IVN的生长与成熟。

相似文献

1
Evidence for host cells as the major contributor of lipids in the intravacuolar network of Toxoplasma-infected cells.
Eukaryot Cell. 2011 Aug;10(8):1095-9. doi: 10.1128/EC.00002-11. Epub 2011 Jun 17.
3
Proximity-Labeling Reveals Novel Host and Parasite Proteins at the Parasitophorous Vacuole Membrane.
mBio. 2021 Dec 21;12(6):e0026021. doi: 10.1128/mBio.00260-21. Epub 2021 Nov 9.
4
Intervacuolar transport and unique topology of GRA14, a novel dense granule protein in Toxoplasma gondii.
Infect Immun. 2008 Nov;76(11):4865-75. doi: 10.1128/IAI.00782-08. Epub 2008 Sep 2.
5
Biogenesis of and activities at the Toxoplasma gondii parasitophorous vacuole membrane.
Subcell Biochem. 2008;47:155-64. doi: 10.1007/978-0-387-78267-6_12.
7
Toxoplasma gondii scavenges mammalian host organelles through the usurpation of host ESCRT-III and Vps4A.
J Cell Sci. 2023 Feb 15;136(4). doi: 10.1242/jcs.260159. Epub 2023 Feb 22.
8
Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii.
PLoS Pathog. 2017 Jun 1;13(6):e1006362. doi: 10.1371/journal.ppat.1006362. eCollection 2017 Jun.
9
The parasite sequesters diverse Rab host vesicles within an intravacuolar network.
J Cell Biol. 2017 Dec 4;216(12):4235-4254. doi: 10.1083/jcb.201701108. Epub 2017 Oct 25.

引用本文的文献

1
A major Toxoplasma serine protease inhibitor protects the parasite against gut-derived serine proteases and NETosis damage.
J Biol Chem. 2025 May;301(5):108457. doi: 10.1016/j.jbc.2025.108457. Epub 2025 Mar 26.
2
Enzymatically enhanced ultrastructure expansion microscopy unlocks expansion of cysts.
mSphere. 2024 Sep 25;9(9):e0032224. doi: 10.1128/msphere.00322-24. Epub 2024 Aug 27.
3
To kill a tachyzoite: assault and battery.
Trends Parasitol. 2024 Jun;40(6):449-451. doi: 10.1016/j.pt.2024.05.002. Epub 2024 May 17.
5
Lipid metabolism: the potential targets for toxoplasmosis treatment.
Parasit Vectors. 2024 Mar 6;17(1):111. doi: 10.1186/s13071-024-06213-9.
6
and associate with host Arfs during infection.
mSphere. 2024 Mar 26;9(3):e0077023. doi: 10.1128/msphere.00770-23. Epub 2024 Feb 13.
7
Function and regulation of a steroidogenic CYP450 enzyme in the mitochondrion of Toxoplasma gondii.
PLoS Pathog. 2023 Aug 31;19(8):e1011566. doi: 10.1371/journal.ppat.1011566. eCollection 2023 Aug.
8
Intracellular development and impact of a marine eukaryotic parasite on its zombified microalgal host.
ISME J. 2022 Oct;16(10):2348-2359. doi: 10.1038/s41396-022-01274-z. Epub 2022 Jul 8.
9
Dense Granule Protein GRA64 Interacts with Host Cell ESCRT Proteins during Infection.
mBio. 2022 Aug 30;13(4):e0144222. doi: 10.1128/mbio.01442-22. Epub 2022 Jun 22.
10
's Basal Complex: The Other Apicomplexan Business End Is Multifunctional.
Front Cell Infect Microbiol. 2022 Apr 29;12:882166. doi: 10.3389/fcimb.2022.882166. eCollection 2022.

本文引用的文献

2
Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplast.
EMBO J. 2006 Jul 12;25(13):3214-22. doi: 10.1038/sj.emboj.7601189. Epub 2006 Jun 15.
4
Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space.
Cell. 2006 Apr 21;125(2):261-74. doi: 10.1016/j.cell.2006.01.056.
6
Biogenesis of nanotubular network in Toxoplasma parasitophorous vacuole induced by parasite proteins.
Mol Biol Cell. 2002 Jul;13(7):2397-409. doi: 10.1091/mbc.e02-01-0021.
7
Host cells: mobilizable lipid resources for the intracellular parasite Toxoplasma gondii.
J Cell Sci. 2002 Aug 1;115(Pt 15):3049-59. doi: 10.1242/jcs.115.15.3049.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验