Kaufmann Kerstin, Nagasaki Masao, Jáuregui Ruy
Business Unit Bioscience, Plant Research International, Wageningen, The Netherlands.
Stud Health Technol Inform. 2011;162:279-97.
We present a dynamical model of the gene network controlling flower development in Arabidopsis thaliana. The network is centered at the regulation of the floral organ identity genes (AP1, AP2, AP3, PI and AG) and ends with the transcription factor complexes responsible for differentiation of floral organs. We built and simulated the regulatory interactions that determine organ specificity using an extension of hybrid Petri nets as implemented in Cell Illustrator. The network topology is characterized by two main features: (1) the presence of multiple autoregulatory feedback loops requiring the formation of protein complexes, and (2) the role of spatial regulators determining floral patterning. The resulting network shows biologically coherent expression patterns for the involved genes, and simulated mutants produce experimentally validated changes in organ expression patterns. The requirement of heteromeric higher-order protein complex formation for positive autoregulatory feedback loops attenuates stochastic fluctuations in gene expression, enabling robust organ-specific gene expression patterns. If autoregulation is mediated by monomers or homodimers of proteins, small variations in initial protein levels can lead to biased production of homeotic proteins, ultimately resulting in homeosis. We also suggest regulatory feedback loops involving miRNA loci by which homeotic genes control the activity of their spatial regulators.
我们提出了一个控制拟南芥花发育的基因网络动力学模型。该网络以花器官特征基因(AP1、AP2、AP3、PI和AG)的调控为中心,并以负责花器官分化的转录因子复合物为终点。我们使用Cell Illustrator中实现的混合Petri网扩展构建并模拟了决定器官特异性的调控相互作用。该网络拓扑结构具有两个主要特征:(1)存在多个需要形成蛋白质复合物的自调控反馈环,以及(2)空间调控因子在决定花模式方面的作用。所得网络显示了相关基因的生物学上连贯的表达模式,并且模拟突变体在器官表达模式上产生了经实验验证的变化。正自调控反馈环对异源高阶蛋白质复合物形成的需求减弱了基因表达中的随机波动,从而实现了稳健的器官特异性基因表达模式。如果自调控由蛋白质的单体或同二聚体介导,初始蛋白质水平的微小变化可能导致同源异型蛋白质的偏向产生,最终导致同源异型现象。我们还提出了涉及miRNA基因座的调控反馈环,同源异型基因通过该反馈环控制其空间调控因子的活性。