Suppr超能文献

Sgf29 结合组蛋白 H3K4me2/3,是 SAGA 复合物募集和组蛋白 H3 乙酰化所必需的。

Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation.

机构信息

School of Life Sciences, University of Science and Technology of China, Anhui, People's Republic of China.

出版信息

EMBO J. 2011 Jun 17;30(14):2829-42. doi: 10.1038/emboj.2011.193.

Abstract

The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is an important chromatin modifying complex that can both acetylate and deubiquitinate histones. Sgf29 is a novel component of the SAGA complex. Here, we report the crystal structures of the tandem Tudor domains of Saccharomyces cerevisiae and human Sgf29 and their complexes with H3K4me2 and H3K4me3 peptides, respectively, and show that Sgf29 selectively binds H3K4me2/3 marks. Our crystal structures reveal that Sgf29 harbours unique tandem Tudor domains in its C-terminus. The tandem Tudor domains in Sgf29 tightly pack against each other face-to-face with each Tudor domain harbouring a negatively charged pocket accommodating the first residue alanine and methylated K4 residue of histone H3, respectively. The H3A1 and K4me3 binding pockets and the limited binding cleft length between these two binding pockets are the structural determinants in conferring the ability of Sgf29 to selectively recognize H3K4me2/3. Our in vitro and in vivo functional assays show that Sgf29 recognizes methylated H3K4 to recruit the SAGA complex to its targets sites and mediates histone H3 acetylation, underscoring the importance of Sgf29 in gene regulation.

摘要

SAGA(SpT-Ada-Gcn5 乙酰转移酶)复合物是一种重要的染色质修饰复合物,既能乙酰化又能去泛素化组蛋白。Sgf29 是 SAGA 复合物的一个新组件。在这里,我们报告了酿酒酵母和人 Sgf29 的串联 Tudor 结构域及其与 H3K4me2 和 H3K4me3 肽的复合物的晶体结构,并表明 Sgf29 选择性地结合 H3K4me2/3 标记。我们的晶体结构揭示了 Sgf29 在其 C 末端具有独特的串联 Tudor 结构域。Sgf29 的串联 Tudor 结构域彼此紧密包装,彼此面对面,每个 Tudor 结构域都有一个带负电荷的口袋,分别容纳组蛋白 H3 的第一个残基丙氨酸和甲基化的 K4 残基。H3A1 和 K4me3 结合口袋以及这两个结合口袋之间有限的结合缝隙长度是赋予 Sgf29 选择性识别 H3K4me2/3 的能力的结构决定因素。我们的体外和体内功能测定表明,Sgf29 识别甲基化的 H3K4 以招募 SAGA 复合物到其靶位点,并介导组蛋白 H3 乙酰化,这突显了 Sgf29 在基因调控中的重要性。

相似文献

2
Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation.
Nature. 2005 Jan 27;433(7024):434-8. doi: 10.1038/nature03242. Epub 2005 Jan 12.
3
Nucleosome competition reveals processive acetylation by the SAGA HAT module.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):E5461-70. doi: 10.1073/pnas.1508449112. Epub 2015 Sep 23.
4
The N-terminus and Tudor domains of Sgf29 are important for its heterochromatin boundary formation function.
J Biochem. 2014 Mar;155(3):159-71. doi: 10.1093/jb/mvt108. Epub 2013 Dec 3.
5
The Gcn5 bromodomain of the SAGA complex facilitates cooperative and cross-tail acetylation of nucleosomes.
J Biol Chem. 2009 Apr 3;284(14):9411-7. doi: 10.1074/jbc.M809617200. Epub 2009 Feb 13.
7
Cloning, purification, crystallization and preliminary crystallographic analysis of the tandem tudor domain of Sgf29 from Saccharomyces cerevisiae.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Aug 1;66(Pt 8):902-4. doi: 10.1107/S1744309110016726. Epub 2010 Jul 27.
8
NuA4 links methylation of histone H3 lysines 4 and 36 to acetylation of histones H4 and H3.
J Biol Chem. 2014 Nov 21;289(47):32656-70. doi: 10.1074/jbc.M114.585588. Epub 2014 Oct 9.
9
Combined Action of Histone Reader Modules Regulates NuA4 Local Acetyltransferase Function but Not Its Recruitment on the Genome.
Mol Cell Biol. 2016 Oct 28;36(22):2768-2781. doi: 10.1128/MCB.00112-16. Print 2016 Nov 15.

引用本文的文献

1
Targeting Tudor domains in leukemia: epigenetic insights for drug development.
Epigenomics. 2025 Aug;17(12):817-825. doi: 10.1080/17501911.2025.2525746. Epub 2025 Jul 7.
2
New breast cancer marker BF-09 is overexpressed in tumor extracts and secreted in serum.
Biochem Biophys Rep. 2025 Jun 20;43:102097. doi: 10.1016/j.bbrep.2025.102097. eCollection 2025 Sep.
3
Aberrant histone modifications in pediatric brain tumors.
Front Oncol. 2025 Jun 10;15:1587157. doi: 10.3389/fonc.2025.1587157. eCollection 2025.
4
Potential role of lysine acetylation in the stepwise adaptation of to fluconazole.
Microbiol Spectr. 2025 May 6;13(5):e0279724. doi: 10.1128/spectrum.02797-24. Epub 2025 Apr 15.
6
Discovery and mechanism of a highly selective, antifungal acetyl CoA synthetase inhibitor.
Res Sq. 2025 Jan 1:rs.3.rs-5619443. doi: 10.21203/rs.3.rs-5619443/v1.
7
BaNDyT: Bayesian Network modeling of molecular Dynamics Trajectories.
bioRxiv. 2024 Nov 8:2024.11.06.622318. doi: 10.1101/2024.11.06.622318.
10
Therapeutic targeting Tudor domains in leukemia via CRISPR-Scan Assisted Drug Discovery.
Sci Adv. 2024 Feb 23;10(8):eadk3127. doi: 10.1126/sciadv.adk3127.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
4
A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces.
Mol Cell. 2011 Feb 18;41(4):480-92. doi: 10.1016/j.molcel.2011.01.015.
6
Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2).
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19266-71. doi: 10.1073/pnas.1008937107. Epub 2010 Oct 25.
7
Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain.
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18398-403. doi: 10.1073/pnas.1013106107. Epub 2010 Oct 11.
9
Structural basis for methylarginine-dependent recognition of Aubergine by Tudor.
Genes Dev. 2010 Sep 1;24(17):1876-81. doi: 10.1101/gad.1956010. Epub 2010 Aug 16.
10
The metazoan ATAC and SAGA coactivator HAT complexes regulate different sets of inducible target genes.
Cell Mol Life Sci. 2010 Feb;67(4):611-28. doi: 10.1007/s00018-009-0199-8. Epub 2009 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验