Ringel Alison E, Cieniewicz Anne M, Taverna Sean D, Wolberger Cynthia
Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):E5461-70. doi: 10.1073/pnas.1508449112. Epub 2015 Sep 23.
The Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex hyperacetylates histone tails in vivo in a manner that depends upon histone 3 lysine 4 trimethylation (H3K4me3), a histone mark enriched at promoters of actively transcribed genes. SAGA contains a separable subcomplex known as the histone acetyltransferase (HAT) module that contains the HAT, Gcn5, bound to Sgf29, Ada2, and Ada3. Sgf29 contains a tandem Tudor domain that recognizes H3K4me3-containing peptides and is required for histone hyperacetylation in vivo. However, the mechanism by which H3K4me3 recognition leads to lysine hyperacetylation is unknown, as in vitro studies show no effect of the H3K4me3 modification on histone peptide acetylation by Gcn5. To determine how H3K4me3 binding by Sgf29 leads to histone hyperacetylation by Gcn5, we used differential fluorescent labeling of histones to monitor acetylation of individual subpopulations of methylated and unmodified nucleosomes in a mixture. We find that the SAGA HAT module preferentially acetylates H3K4me3 nucleosomes in a mixture containing excess unmodified nucleosomes and that this effect requires the Tudor domain of Sgf29. The H3K4me3 mark promotes processive, multisite acetylation of histone H3 by Gcn5 that can account for the different acetylation patterns established by SAGA at promoters versus coding regions. Our results establish a model for Sgf29 function at gene promoters and define a mechanism governing crosstalk between histone modifications.
Spt-Ada-Gcn5 乙酰转移酶(SAGA)共激活复合物在体内以一种依赖于组蛋白 H3 赖氨酸 4 三甲基化(H3K4me3)的方式使组蛋白尾部高度乙酰化,H3K4me3 是一种在活跃转录基因启动子处富集的组蛋白标记。SAGA 包含一个可分离的亚复合物,称为组蛋白乙酰转移酶(HAT)模块,该模块包含与 Sgf29、Ada2 和 Ada3 结合的 HAT、Gcn5。Sgf29 包含一个串联 Tudor 结构域,可识别含 H3K4me3 的肽段,并且是体内组蛋白高度乙酰化所必需的。然而,H3K4me3 识别导致赖氨酸高度乙酰化的机制尚不清楚,因为体外研究表明 H3K4me3 修饰对 Gcn5 介导的组蛋白肽段乙酰化没有影响。为了确定 Sgf29 与 H3K4me3 的结合如何导致 Gcn5 介导的组蛋白高度乙酰化,我们使用组蛋白的差异荧光标记来监测混合物中甲基化和未修饰核小体单个亚群的乙酰化情况。我们发现,在含有过量未修饰核小体的混合物中,SAGA HAT 模块优先使 H3K4me3 核小体乙酰化,并且这种效应需要 Sgf29 的 Tudor 结构域。H3K4me3 标记促进 Gcn5 对组蛋白 H3 进行持续性、多位点乙酰化,这可以解释 SAGA 在启动子与编码区建立的不同乙酰化模式。我们的结果建立了一个关于 Sgf29 在基因启动子处功能的模型,并定义了一种控制组蛋白修饰之间相互作用的机制。