State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.
Opt Lett. 2011 Jun 15;36(12):2318-20. doi: 10.1364/OL.36.002318.
We propose a simple and robust polynomial-based phase-fitting (PPF) technique for single interferogram demodulation. Based on the smoothness assumption, the method employs a set of Zernike polynomials (ZPs) to fit the phase and estimates the expansion coefficients using a global optimization algorithm, i.e., differential evolution. The fitting order of the ZPs and the bounds of the coefficients can be intuitively determined according to the shape and number of fringes of the interferogram. Different from classical methods that need predefined scanning paths to guide the phase estimator, the PPF demodulates an interferogram globally and is insensitive to local defects, which allows it to deal with very noisy interferograms. Moreover, as the PPF gives the reconstructed phase by use of the ZPs, no further phase-unwrapping or wavefront-fitting procedures are needed. Experimental results have demonstrated the robustness and effectiveness of the method.
我们提出了一种简单而稳健的基于多项式的相位拟合(PPF)技术,用于单干涉图解调。基于平滑性假设,该方法采用一组泽尼克多项式(ZPs)来拟合相位,并使用全局优化算法(即差分进化)来估计展开系数。ZPs 的拟合阶数和系数的边界可以根据干涉图的条纹形状和数量直观地确定。与需要预定义扫描路径来引导相位估计器的经典方法不同,PPF 对干涉图进行全局解调,对局部缺陷不敏感,因此可以处理非常嘈杂的干涉图。此外,由于 PPF 通过使用 ZPs 给出重建相位,因此不需要进一步的相位解缠或波前拟合过程。实验结果证明了该方法的鲁棒性和有效性。