Suppr超能文献

心如音乐。

Mind as music.

作者信息

Lloyd Dan

机构信息

Program in Neuroscience, Department of Philosophy, Trinity College Hartford, CT, USA.

出版信息

Front Psychol. 2011 Apr 20;2:63. doi: 10.3389/fpsyg.2011.00063. eCollection 2011.

Abstract

Cognitive neuroscience typically develops hypotheses to explain phenomena that are localized in space and time. Specific regions of the brain execute characteristic functions, whose causes and effects are prompt; determining these functions in spatial and temporal isolation is generally regarded as the first step toward understanding the coherent operation of the whole brain over time. In other words, if the task of cognitive neuroscience is to interpret the neural code, then the first step has been semantic, searching for the meanings (functions) of localized elements, prior to exploring neural syntax, the mutual constraints among elements synchronically and diachronically. While neuroscience has made great strides in discovering the functions of regions of the brain, less is known about the dynamic patterns of brain activity over time, in particular, whether regions activate in sequences that could be characterized syntactically. Researchers generally assume that neural semantics is a precondition for determining neural syntax. Furthermore, it is often assumed that the syntax of the brain is too complex for our present technology and understanding. A corollary of this view holds that functional MRI (fMRI) lacks the spatial and temporal resolution needed to identify the dynamic syntax of neural computation. This paper examines these assumptions with a novel analysis of fMRI image series, resting on the conjecture that any computational code will exhibit aggregate features that can be detected even if the meaning of the code is unknown. Specifically, computational codes will be sparse or dense in different degrees. A sparse code is one that uses only a few of the many possible patterns of activity (in the brain) or symbols (in a human-made code). Considering sparseness at different scales and as measured by different techniques, this approach clearly distinguishes two conventional coding systems, namely, language and music. Based on an analysis of 99 subjects in three different fMRI protocols, in comparison with 194 musical examples and 700 language passages, it is observed that fMRI activity is more similar to music than it is to language, as measured over single symbols, as well as symbol combinations in pairs and triples. Tools from cognitive musicology may therefore be useful in characterizing the brain as a dynamical system.

摘要

认知神经科学通常会提出假设来解释在空间和时间上具有局部性的现象。大脑的特定区域执行特定功能,其因果关系迅速;在空间和时间上孤立地确定这些功能通常被视为理解大脑随时间连贯运作的第一步。换句话说,如果认知神经科学的任务是解释神经编码,那么第一步是语义层面的,即在探索神经句法(元素之间同步和历时的相互约束)之前,寻找局部元素的意义(功能)。虽然神经科学在发现大脑区域的功能方面取得了巨大进展,但对于大脑活动随时间的动态模式了解较少,特别是这些区域是否以句法特征的序列激活。研究人员通常认为神经语义是确定神经句法的前提条件。此外,人们常常认为大脑的句法对于我们目前的技术和理解来说过于复杂。这种观点的一个推论是,功能磁共振成像(fMRI)缺乏识别神经计算动态句法所需的空间和时间分辨率。本文通过对fMRI图像序列的新颖分析来检验这些假设,基于这样的推测:任何计算编码都会表现出即使编码的意义未知也能被检测到的总体特征。具体而言,计算编码在不同程度上会是稀疏的或密集的。稀疏编码是指仅使用(大脑中的)许多可能活动模式或(人造编码中的)符号中的少数几个。考虑到不同尺度以及通过不同技术测量的稀疏性,这种方法清楚地区分了两种传统编码系统,即语言和音乐。基于对99名受试者在三种不同fMRI方案下的分析,与194个音乐示例和700篇语言段落相比,观察到fMRI活动在单个符号以及成对和三个符号组合的测量上与音乐比与语言更相似。因此,认知音乐学的工具可能有助于将大脑表征为一个动态系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/572e/3110500/89dde53cc513/fpsyg-02-00063-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验