迈向人类大脑功能的发现科学。
Toward discovery science of human brain function.
机构信息
Department of Radiology, New Jersey Medical School, Newark, NJ 07103, USA.
出版信息
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9. doi: 10.1073/pnas.0911855107. Epub 2010 Feb 22.
Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the fMRI signal that are temporally correlated across functionally related areas. Referred to as functional connectivity, these correlations yield detailed maps of complex neural systems, collectively constituting an individual's "functional connectome." Reproducibility across datasets and individuals suggests the functional connectome has a common architecture, yet each individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships, will require multicenter collaborative datasets. Here we initiate this endeavor by gathering R-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter-individual variability. Age and sex emerged as significant determinants. These results demonstrate that independent R-fMRI datasets can be aggregated and shared. High-throughput R-fMRI can provide quantitative phenotypes for molecular genetic studies and biomarkers of developmental and pathological processes in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/.
尽管它在探索基因组方面取得了成功,但发现科学仍然避开了功能神经影像学领域。核心挑战仍然是开发共同的范式,以在没有先验假设的限制下研究大脑中的无数功能系统。静息态功能磁共振成像(R-fMRI)构成了一种有潜力的方法,可以解决这一挑战。在休息期间对大脑进行成像可以揭示 fMRI 信号中幅度较大的自发性低频(<0.1 Hz)波动,这些波动在功能相关区域之间具有时间相关性。这些相关性被称为功能连接,它们提供了复杂神经网络的详细图谱,共同构成了个体的“功能连接组”。在数据集和个体之间的可重复性表明功能连接组具有共同的结构,但每个个体的功能连接组都表现出独特的特征,连接模式和强度具有稳定的、有意义的个体间差异。全面绘制功能连接组图,以及随后利用它来辨别遗传影响和大脑-行为关系,将需要多中心合作数据集。在这里,我们通过从 35 个国际中心独立收集的 1414 名志愿者的 R-fMRI 数据来开始这项工作。我们展示了正功能连接和负功能连接的通用结构,以及个体间变异性的一致位置。年龄和性别成为显著的决定因素。这些结果表明,独立的 R-fMRI 数据集可以被聚合和共享。高通量的 R-fMRI 可以为分子遗传学研究提供定量表型,并为大脑发育和病理过程的生物标志物提供参考。为了启动大脑功能的发现科学,1000 个功能连接组项目数据集可在 www.nitrc.org/projects/fcon_1000/ 免费获取。
相似文献
Proc Natl Acad Sci U S A. 2010-2-22
Rev Neurol. 2011-3-1
引用本文的文献
Nat Rev Neurol. 2025-9-3
Hum Brain Mapp. 2025-8-15
Sci Rep. 2025-8-17
Imaging Neurosci (Camb). 2025-6-24
Imaging Neurosci (Camb). 2025-2-18
Imaging Neurosci (Camb). 2025-6-24
Imaging Neurosci (Camb). 2025-5-30
本文引用的文献
Proc Natl Acad Sci U S A. 2009-11-16
Proc Natl Acad Sci U S A. 2009-11-10
Nature. 2009-10-8
Neuroimage. 2009-9-24
PLoS Biol. 2009-7
Proc Natl Acad Sci U S A. 2009-8-4
Curr Opin Pediatr. 2009-8