Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto (Tn), Italy
Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto (Tn), Italy.
J Neurosci. 2020 Mar 25;40(13):2727-2736. doi: 10.1523/JNEUROSCI.1849-19.2020. Epub 2020 Feb 14.
A recent proposal posits that humans might use the same neuronal machinery to support the representation of both spatial and nonspatial information, organizing concepts and memories using spatial codes. This view predicts that the same neuronal coding schemes characterizing navigation in the physical space (tuned to distance and direction) should underlie navigation of abstract semantic spaces, even if they are categorical and labeled by symbols. We constructed an artificial semantic environment by parsing a bidimensional audiovisual object space into four labeled categories. Before and after a nonspatial symbolic categorization training, 25 adults (15 females) were presented with pseudorandom sequences of objects and words during a functional MRI session. We reasoned that subsequent presentations of stimuli (either objects or words) referring to different categories implied implicit movements in the novel semantic space, and that such movements subtended specific distances and directions. Using whole-brain fMRI adaptation and searchlight model-based representational similarity analysis, we found evidence of both distance-based and direction-based responses in brain regions typically involved in spatial navigation: the medial prefrontal cortex and the right entorhinal cortex (EHC). After training, both regions encoded the distances between concepts, making it possible to recover a faithful bidimensional representation of the semantic space directly from their multivariate activity patterns, whereas the right EHC also exhibited a periodic modulation as a function of traveled direction. Our results indicate that the brain regions and coding schemes supporting relations and movements between spatial locations in mammals are "recycled" in humans to represent a bidimensional multisensory conceptual space during a symbolic categorization task. The hippocampal formation and the medial prefrontal cortex of mammals represent the surrounding physical space by encoding distances and directions between locations. Recent works suggested that humans use the same neural machinery to organize their memories as points of an internal map of experiences. We asked whether the same brain regions and neural codes supporting spatial navigation are recruited when humans use language to organize their knowledge of the world in categorical semantic representations. Using fMRI, we show that the medial prefrontal cortex and the entorhinal portion of the hippocampal formation represent the distances and the movement directions between concepts of a novel audiovisual semantic space, and that it was possible to reconstruct, from neural data, their relationships in memory.
最近的一项提议认为,人类可能使用相同的神经元机制来支持空间和非空间信息的表示,使用空间代码组织概念和记忆。这种观点预测,表征物理空间中导航的相同神经元编码方案(调谐到距离和方向)应该是抽象语义空间导航的基础,即使它们是类别化的并且用符号标记。我们通过将二维视听对象空间解析为四个标记类别,构建了一个人工语义环境。在非空间符号分类训练之前和之后,25 名成年人(15 名女性)在功能磁共振成像 (fMRI) 期间接受了对象和单词的随机序列呈现。我们推断,刺激(对象或单词)的后续呈现暗示了新语义空间中的隐含运动,并且这些运动具有特定的距离和方向。使用全脑 fMRI 适应和基于搜索灯模型的表示相似性分析,我们在通常参与空间导航的大脑区域中发现了基于距离和基于方向的反应的证据:内侧前额叶皮层和右侧内嗅皮层 (EHC)。经过训练,这两个区域都编码了概念之间的距离,使得能够直接从它们的多元活动模式中恢复语义空间的二维表示,而右侧 EHC 也表现出作为旅行方向的函数的周期性调制。我们的结果表明,支持哺乳动物中空间位置之间关系和运动的大脑区域和编码方案被“回收”,以在符号分类任务中表示二维多感觉概念空间。海马结构和哺乳动物的内侧前额叶皮层通过编码位置之间的距离和方向来表示周围的物理空间。最近的研究表明,人类使用相同的神经机制来组织他们的记忆,作为经验内部地图的点。我们想知道当人类使用语言以类别化的语义表示来组织他们对世界的知识时,是否会招募支持空间导航的相同大脑区域和神经编码。使用 fMRI,我们表明内侧前额叶皮层和海马体的内嗅部分代表了新的视听语义空间中概念之间的距离和运动方向,并且可以从神经数据中重建它们在记忆中的关系。