Suppr超能文献

K(v)7.2通道的电压感应结构域作为致癫痫突变和抗惊厥药物的分子靶点

The Voltage-Sensing Domain of K(v)7.2 Channels as a Molecular Target for Epilepsy-Causing Mutations and Anticonvulsants.

作者信息

Miceli Francesco, Soldovieri Maria Virginia, Iannotti Fabio Arturo, Barrese Vincenzo, Ambrosino Paolo, Martire Maria, Cilio Maria Roberta, Taglialatela Maurizio

机构信息

Division of Neurology, IRCCS Bambino Gesù Children's Hospital Rome, Italy.

出版信息

Front Pharmacol. 2011 Feb 1;2:2. doi: 10.3389/fphar.2011.00002. eCollection 2011.

Abstract

Understanding the molecular mechanisms underlying voltage-dependent gating in voltage-gated ion channels (VGICs) has been a major effort over the last decades. In recent years, changes in the gating process have emerged as common denominators for several genetically determined channelopathies affecting heart rhythm (arrhythmias), neuronal excitability (epilepsy, pain), or skeletal muscle contraction (periodic paralysis). Moreover, gating changes appear as the main molecular mechanism by which several natural toxins from a variety of species affect ion channel function. In this work, we describe the pathophysiological and pharmacological relevance of the gating process in voltage-gated K(+) channels encoded by the K(v)7 gene family. After reviewing the current knowledge on the molecular mechanisms and on the structural models of voltage-dependent gating in VGICs, we describe the physiological relevance of these channels, with particular emphasis on those formed by K(v)7.2-K(v)7.5 subunits having a well-established role in controlling neuronal excitability in humans. In fact, genetically determined alterations in K(v)7.2 and K(v)7.3 genes are responsible for benign familial neonatal convulsions, a rare seizure disorder affecting newborns, and the pharmacological activation of K(v)7.2/3 channels can exert antiepileptic activity in humans. Both mutation-triggered channel dysfunction and drug-induced channel activation can occur by impeding or facilitating, respectively, channel sensitivity to membrane voltage and can affect overlapping molecular sites within the voltage-sensing domain of these channels. Thus, understanding the molecular steps involved in voltage-sensing in K(v)7 channels will allow to better define the pathogenesis of rare human epilepsy, and to design innovative pharmacological strategies for the treatment of epilepsies and, possibly, other human diseases characterized by neuronal hyperexcitability.

摘要

在过去几十年里,了解电压门控离子通道(VGICs)中电压依赖性门控的分子机制一直是一项主要工作。近年来,门控过程的变化已成为几种影响心律(心律失常)、神经元兴奋性(癫痫、疼痛)或骨骼肌收缩(周期性麻痹)的遗传决定的通道病的共同特征。此外,门控变化似乎是多种物种的几种天然毒素影响离子通道功能的主要分子机制。在这项工作中,我们描述了由K(v)7基因家族编码的电压门控K(+)通道中门控过程的病理生理和药理相关性。在回顾了关于VGICs中电压依赖性门控的分子机制和结构模型的当前知识后,我们描述了这些通道的生理相关性,特别强调了由K(v)7.2 - K(v)7.5亚基形成的通道,它们在控制人类神经元兴奋性方面具有既定作用。事实上,K(v)7.2和K(v)7.3基因的遗传决定的改变是良性家族性新生儿惊厥的原因,这是一种影响新生儿的罕见癫痫疾病,并且K(v)7.2/3通道的药理激活可以在人类中发挥抗癫痫活性。突变引发的通道功能障碍和药物诱导的通道激活分别可以通过阻碍或促进通道对膜电压的敏感性而发生,并且可以影响这些通道电压传感域内的重叠分子位点。因此,了解K(v)7通道中电压传感所涉及的分子步骤将有助于更好地定义罕见人类癫痫的发病机制,并设计创新的药理策略来治疗癫痫以及可能的其他以神经元过度兴奋为特征的人类疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f269/3108560/54a8860cd86c/fphar-02-00002-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验