Department of Physics, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA.
Biophys J. 2010 May 19;98(10):2189-98. doi: 10.1016/j.bpj.2010.02.056.
The atomic models of the Kv1.2 potassium channel in the active and resting state, originally presented elsewhere, are here refined using molecular dynamics simulations in an explicit membrane-solvent environment. With a minor adjustment of the orientation of the first arginine along the S4 segment, the total gating charge of the channel determined from >0.5 mus of molecular dynamics simulation is approximately 12-12.7 e, in good accord with experimental estimates for the Shaker potassium channel, indicating that the final models offer a realistic depiction of voltage-gating. In the resting state of Kv1.2, the S4 segment in the voltage-sensing domain (VSD) spontaneously converts into a 3(10) helix over a stretch of 10 residues. The 3(10) helical conformation orients the gating arginines on S4 toward a water-filled crevice within the VSD and allows salt-bridge interactions with negatively charged residues along S2 and S3. Free energy calculations of the fractional transmembrane potential, acting upon key charged residues of the VSD, reveals that the applied field varies rapidly over a narrow region of 10-15 A corresponding to the outer leaflet of the bilayer. The focused field allows the transfer of a large gating charge without translocation of S4 across the membrane.
钾通道 Kv1.2 的原子模型,分别在激活态和静息态下,最初在别处展示,现在在明确的膜-溶剂环境中,通过分子动力学模拟得到了进一步的优化。通过调整 S4 片段上第一个精氨酸的方向,从超过 0.5 微秒的分子动力学模拟中确定的通道总门控电荷量约为 12-12.7 个电子,这与 Shaker 钾通道的实验估计值非常吻合,表明最终的模型提供了对电压门控的现实描述。在 Kv1.2 的静息状态下,电压传感域(VSD)中的 S4 片段在 10 个残基的长度上自发地转化为 3(10) 螺旋。3(10) 螺旋构象将 S4 上的门控精氨酸定向到 VSD 内充满水的裂缝中,并允许与 S2 和 S3 上带负电荷的残基形成盐桥相互作用。对 VSD 关键带电残基的跨膜部分电势的自由能计算表明,外加电场在对应于双层外叶的 10-15Å 的狭窄区域内迅速变化。聚焦的电场允许在不使 S4 穿过膜的情况下传递大量的门控电荷。