Suppr超能文献

计算 Kv1.2 电压激活钾通道的门控电荷。

Calculation of the gating charge for the Kv1.2 voltage-activated potassium channel.

机构信息

Department of Physics, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA.

出版信息

Biophys J. 2010 May 19;98(10):2189-98. doi: 10.1016/j.bpj.2010.02.056.

Abstract

The atomic models of the Kv1.2 potassium channel in the active and resting state, originally presented elsewhere, are here refined using molecular dynamics simulations in an explicit membrane-solvent environment. With a minor adjustment of the orientation of the first arginine along the S4 segment, the total gating charge of the channel determined from >0.5 mus of molecular dynamics simulation is approximately 12-12.7 e, in good accord with experimental estimates for the Shaker potassium channel, indicating that the final models offer a realistic depiction of voltage-gating. In the resting state of Kv1.2, the S4 segment in the voltage-sensing domain (VSD) spontaneously converts into a 3(10) helix over a stretch of 10 residues. The 3(10) helical conformation orients the gating arginines on S4 toward a water-filled crevice within the VSD and allows salt-bridge interactions with negatively charged residues along S2 and S3. Free energy calculations of the fractional transmembrane potential, acting upon key charged residues of the VSD, reveals that the applied field varies rapidly over a narrow region of 10-15 A corresponding to the outer leaflet of the bilayer. The focused field allows the transfer of a large gating charge without translocation of S4 across the membrane.

摘要

钾通道 Kv1.2 的原子模型,分别在激活态和静息态下,最初在别处展示,现在在明确的膜-溶剂环境中,通过分子动力学模拟得到了进一步的优化。通过调整 S4 片段上第一个精氨酸的方向,从超过 0.5 微秒的分子动力学模拟中确定的通道总门控电荷量约为 12-12.7 个电子,这与 Shaker 钾通道的实验估计值非常吻合,表明最终的模型提供了对电压门控的现实描述。在 Kv1.2 的静息状态下,电压传感域(VSD)中的 S4 片段在 10 个残基的长度上自发地转化为 3(10) 螺旋。3(10) 螺旋构象将 S4 上的门控精氨酸定向到 VSD 内充满水的裂缝中,并允许与 S2 和 S3 上带负电荷的残基形成盐桥相互作用。对 VSD 关键带电残基的跨膜部分电势的自由能计算表明,外加电场在对应于双层外叶的 10-15Å 的狭窄区域内迅速变化。聚焦的电场允许在不使 S4 穿过膜的情况下传递大量的门控电荷。

相似文献

1
Calculation of the gating charge for the Kv1.2 voltage-activated potassium channel.
Biophys J. 2010 May 19;98(10):2189-98. doi: 10.1016/j.bpj.2010.02.056.
2
Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel.
J Gen Physiol. 2015 Apr;145(4):345-58. doi: 10.1085/jgp.201411300. Epub 2015 Mar 16.
3
Molecular dynamics simulation of Kv channel voltage sensor helix in a lipid membrane with applied electric field.
Biophys J. 2008 Aug;95(4):1729-44. doi: 10.1529/biophysj.108.130658. Epub 2008 May 16.
4
Molecular dynamics investigation of the ω-current in the Kv1.2 voltage sensor domains.
Biophys J. 2012 Jan 18;102(2):258-67. doi: 10.1016/j.bpj.2011.10.057.
6
Environment of the gating charges in the Kv1.2 Shaker potassium channel.
Biophys J. 2006 May 1;90(9):L64-6. doi: 10.1529/biophysj.106.080754. Epub 2006 Mar 13.
7
Dynamics of the Kv1.2 voltage-gated K+ channel in a membrane environment.
Biophys J. 2007 Nov 1;93(9):3070-82. doi: 10.1529/biophysj.107.112540. Epub 2007 Aug 17.
8
Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel.
PLoS Comput Biol. 2009 Feb;5(2):e1000289. doi: 10.1371/journal.pcbi.1000289. Epub 2009 Feb 20.
9
Initial response of the potassium channel voltage sensor to a transmembrane potential.
J Am Chem Soc. 2009 Feb 18;131(6):2107-9. doi: 10.1021/ja807330g.
10
Role of charged residues in the S1-S4 voltage sensor of BK channels.
J Gen Physiol. 2006 Mar;127(3):309-28. doi: 10.1085/jgp.200509421.

引用本文的文献

1
Atomistic simulation of voltage activation of a truncated BK channel.
Elife. 2025 Sep 8;14:RP105895. doi: 10.7554/eLife.105895.
2
Atomistic Simulation of Voltage Activation of a Truncated BK Channel.
bioRxiv. 2025 Jun 14:2025.01.08.631907. doi: 10.1101/2025.01.08.631907.
4
Nernst equilibrium, rectification, and saturation: Insights into ion channel behavior.
Biophys J. 2024 Dec 17;123(24):4304-4315. doi: 10.1016/j.bpj.2024.10.016. Epub 2024 Oct 30.
5
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.
6
Nernst Equilibrium, Rectification, and Saturation: Insights into Ion Channel Behavior.
bioRxiv. 2024 Aug 17:2024.08.16.608320. doi: 10.1101/2024.08.16.608320.
7
In Silico Methods for the Discovery of Kv7.2/7.3 Channels Modulators: A Comprehensive Review.
Molecules. 2024 Jul 8;29(13):3234. doi: 10.3390/molecules29133234.
8
Dynamics of activation in the voltage-sensing domain of Ciona intestinalis phosphatase Ci-VSP.
Nat Commun. 2024 Feb 15;15(1):1408. doi: 10.1038/s41467-024-45514-6.
9
Anionic omega currents from single countercharge mutants in the voltage-sensing domain of Ci-VSP.
J Gen Physiol. 2024 Jan 1;156(1). doi: 10.1085/jgp.202213311. Epub 2023 Nov 29.
10
Domain- and state-specific shape of the electric field tunes voltage sensing in voltage-gated sodium channels.
Biophys J. 2023 May 16;122(10):1807-1821. doi: 10.1016/j.bpj.2023.04.013. Epub 2023 Apr 18.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel.
PLoS Comput Biol. 2009 Feb;5(2):e1000289. doi: 10.1371/journal.pcbi.1000289. Epub 2009 Feb 20.
3
Initial response of the potassium channel voltage sensor to a transmembrane potential.
J Am Chem Soc. 2009 Feb 18;131(6):2107-9. doi: 10.1021/ja807330g.
4
Voltage-dependent K+ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19276-81. doi: 10.1073/pnas.0810187105. Epub 2008 Dec 2.
5
S4-based voltage sensors have three major conformations.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17600-7. doi: 10.1073/pnas.0807387105. Epub 2008 Sep 25.
6
The membrane potential and its representation by a constant electric field in computer simulations.
Biophys J. 2008 Nov 1;95(9):4205-16. doi: 10.1529/biophysj.108.136499. Epub 2008 Jul 18.
8
Molecular dynamics simulation of Kv channel voltage sensor helix in a lipid membrane with applied electric field.
Biophys J. 2008 Aug;95(4):1729-44. doi: 10.1529/biophysj.108.130658. Epub 2008 May 16.
9
Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1511-5. doi: 10.1073/pnas.0711533105. Epub 2008 Jan 23.
10
Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment.
Nature. 2007 Nov 15;450(7168):376-82. doi: 10.1038/nature06265.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验