Suppr超能文献

慢性癫痫的系统水平功能基因组学分析。

A systems level, functional genomics analysis of chronic epilepsy.

机构信息

Interdepartmental Program for Neuroscience, University of California Los Angeles, Los Angeles, California, United States of America.

出版信息

PLoS One. 2011;6(6):e20763. doi: 10.1371/journal.pone.0020763. Epub 2011 Jun 14.

Abstract

Neither the molecular basis of the pathologic tendency of neuronal circuits to generate spontaneous seizures (epileptogenicity) nor anti-epileptogenic mechanisms that maintain a seizure-free state are well understood. Here, we performed transcriptomic analysis in the intrahippocampal kainate model of temporal lobe epilepsy in rats using both Agilent and Codelink microarray platforms to characterize the epileptic processes. The experimental design allowed subtraction of the confounding effects of the lesion, identification of expression changes associated with epileptogenicity, and genes upregulated by seizures with potential homeostatic anti-epileptogenic effects. Using differential expression analysis, we identified several hundred expression changes in chronic epilepsy, including candidate genes associated with epileptogenicity such as Bdnf and Kcnj13. To analyze these data from a systems perspective, we applied weighted gene co-expression network analysis (WGCNA) to identify groups of co-expressed genes (modules) and their central (hub) genes. One such module contained genes upregulated in the epileptogenic region, including multiple epileptogenicity candidate genes, and was found to be involved the protection of glial cells against oxidative stress, implicating glial oxidative stress in epileptogenicity. Another distinct module corresponded to the effects of chronic seizures and represented changes in neuronal synaptic vesicle trafficking. We found that the network structure and connectivity of one hub gene, Sv2a, showed significant changes between normal and epileptogenic tissue, becoming more highly connected in epileptic brain. Since Sv2a is a target of the antiepileptic levetiracetam, this module may be important in controlling seizure activity. Bioinformatic analysis of this module also revealed a potential mechanism for the observed transcriptional changes via generation of longer alternatively polyadenlyated transcripts through the upregulation of the RNA binding protein HuD. In summary, combining conventional statistical methods and network analysis allowed us to interpret the differentially regulated genes from a systems perspective, yielding new insight into several biological pathways underlying homeostatic anti-epileptogenic effects and epileptogenicity.

摘要

神经元回路产生自发性癫痫发作(致痫性)的病理倾向的分子基础,以及维持无癫痫发作状态的抗癫痫发生机制,都尚未被充分理解。在这里,我们使用安捷伦和 Codelink 微阵列平台,在大鼠海人酸诱导的颞叶癫痫模型中进行了转录组分析,以描述癫痫过程。该实验设计允许减去病变的混杂影响,鉴定与致痫性相关的表达变化,以及由癫痫发作上调的具有潜在的抗癫痫发生作用的基因。通过差异表达分析,我们在慢性癫痫中鉴定了数百个表达变化,包括与致痫性相关的候选基因,如 Bdnf 和 Kcnj13。为了从系统角度分析这些数据,我们应用加权基因共表达网络分析(WGCNA)来识别共表达基因(模块)及其中心(枢纽)基因。这样的一个模块包含在致痫区上调的基因,包括多个致痫性候选基因,并且被发现参与了胶质细胞对抗氧化应激的保护作用,这表明胶质细胞的氧化应激与致痫性有关。另一个独特的模块对应于慢性癫痫发作的影响,代表了神经元突触小泡运输的变化。我们发现,一个枢纽基因 Sv2a 的网络结构和连接性在正常和致痫组织之间发生了显著变化,在癫痫脑中变得更加连接。由于 Sv2a 是抗癫痫药左乙拉西坦的靶标,因此该模块可能在控制癫痫活动中很重要。对该模块的生物信息学分析还揭示了通过上调 RNA 结合蛋白 HuD 产生更长的可变多聚腺苷酸化转录本,从而导致观察到的转录变化的潜在机制。总之,将传统的统计方法和网络分析相结合,使我们能够从系统角度解释差异调控的基因,为稳态抗癫痫发生和致痫性的几个生物学途径提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/920d/3114768/770228d23451/pone.0020763.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验