Suppr超能文献

我们在人类大脑神经受体图谱方面取得了哪些进展?

Where have we got to with neuroreceptor mapping of the human brain?

作者信息

Mazière B, Mazière M

机构信息

Service Hospitalier Frédéric Joliot Commissariat à l'Energie Atomique, Orsay, France.

出版信息

Eur J Nucl Med. 1990;16(11):817-35. doi: 10.1007/BF00833018.

Abstract

In the past two decades, tritiated radioligand receptor binding, a tool commonly used to investigate the site of action of drugs in laboratory animals, has provided a vast body of information on neuropharmacology and neurobiology. Several neurological and psychiatric diseases have been related to neurotransmitter and receptor disorders. In order to study ligand interactions with receptors in vivo in humans, new tracers capable of carrying a gamma-emitting radionuclide to the receptor have been designed. Emission computerized tomography (ECT) techniques such as positron (PET) or single photon emission tomography (SPET) allow monitoring of the time-course of regional tissue concentration of these radiolabelled ligands. PET and SPET each have their inherent advantages and drawbacks. The cyclotron-based technology of PET is a demanding and expensive technique that, to date, is still mainly reserved for research purposes. It is hoped that once the scientific basis of a physiopathological study is established using PET, diagnostic information might be provided by the more readily available SPET technology. The purpose of this article is to review the current state of receptor-binding gamma-emitting radioligands and to present the clinical potential of these new kinds of radiopharmaceuticals in clinical investigation.

摘要

在过去二十年中,氚标记放射性配体受体结合技术作为一种常用于研究实验动物药物作用位点的工具,为神经药理学和神经生物学提供了大量信息。几种神经和精神疾病已被证实与神经递质和受体紊乱有关。为了在人体中研究配体与受体的体内相互作用,人们设计了能够将发射γ射线的放射性核素携带至受体的新型示踪剂。诸如正电子发射断层扫描(PET)或单光子发射断层扫描(SPET)等发射型计算机断层扫描(ECT)技术,能够监测这些放射性标记配体在局部组织中的浓度随时间的变化情况。PET和SPET各有其固有的优缺点。基于回旋加速器的PET技术要求苛刻且成本高昂,迄今为止仍主要用于研究目的。人们希望,一旦利用PET确立了生理病理学研究的科学基础,更易于获取的SPET技术或许能够提供诊断信息。本文旨在综述受体结合γ发射放射性配体的当前状况,并介绍这类新型放射性药物在临床研究中的临床应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验