Suppr超能文献

通过在 MudPIT 之前使用 ProteoMiner 进行蛋白质组均等化,改善低丰度蛋白质的蛋白质组学指标。

Improvements in proteomic metrics of low abundance proteins through proteome equalization using ProteoMiner prior to MudPIT.

机构信息

Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.

出版信息

J Proteome Res. 2011 Aug 5;10(8):3690-700. doi: 10.1021/pr200304u. Epub 2011 Jun 24.

Abstract

Ideally, shotgun proteomics would facilitate the identification of an entire proteome with 100% protein sequence coverage. In reality, the large dynamic range and complexity of cellular proteomes results in oversampling of abundant proteins, while peptides from low abundance proteins are undersampled or remain undetected. We tested the proteome equalization technology, ProteoMiner, in conjunction with Multidimensional Protein Identification Technology (MudPIT) to determine how the equalization of protein dynamic range could improve shotgun proteomics methods for the analysis of cellular proteomes. Our results suggest low abundance protein identifications were improved by two mechanisms: (1) depletion of high abundance proteins freed ion trap sampling space usually occupied by high abundance peptides and (2) enrichment of low abundance proteins increased the probability of sampling their corresponding more abundant peptides. Both mechanisms also contributed to dramatic increases in the quantity of peptides identified and the quality of MS/MS spectra acquired due to increases in precursor intensity of peptides from low abundance proteins. From our large data set of identified proteins, we categorized the dominant physicochemical factors that facilitate proteome equalization with a hexapeptide library. These results illustrate that equalization of the dynamic range of the cellular proteome is a promising methodology to improve low abundance protein identification confidence, reproducibility, and sequence coverage in shotgun proteomics experiments, opening a new avenue of research for improving proteome coverage.

摘要

理想情况下,鸟枪法蛋白质组学可以实现对整个蛋白质组的 100%序列覆盖鉴定。但实际上,由于细胞蛋白质组具有较大的动态范围和复杂性,大量存在的蛋白质会被过度采样,而低丰度蛋白质的肽段则被采样不足或未被检测到。我们联合使用多维蛋白质鉴定技术(MudPIT)和 ProteoMiner 蛋白质组均一化技术来检测蛋白质组均一化技术,以确定蛋白质动态范围的均一化如何改善用于分析细胞蛋白质组的鸟枪法蛋白质组学方法。我们的研究结果表明,有两种机制可以改善低丰度蛋白质的鉴定:(1)耗尽高丰度蛋白质可以释放离子阱采样空间,通常这些空间被高丰度肽占据;(2)低丰度蛋白质的富集增加了采样其相应更丰富肽的概率。这两种机制也有助于由于低丰度蛋白质的肽的前体强度增加,从而显著增加了鉴定的肽数量和获得的 MS/MS 谱的质量。根据我们的大量鉴定蛋白质数据集,我们使用六肽文库对促进蛋白质组均一化的主要物理化学因素进行了分类。这些结果表明,细胞蛋白质组的动态范围均一化是一种很有前途的方法,可以提高鸟枪法蛋白质组学实验中低丰度蛋白质鉴定的置信度、重现性和序列覆盖率,为提高蛋白质组覆盖率开辟了新的研究途径。

相似文献

1
Improvements in proteomic metrics of low abundance proteins through proteome equalization using ProteoMiner prior to MudPIT.
J Proteome Res. 2011 Aug 5;10(8):3690-700. doi: 10.1021/pr200304u. Epub 2011 Jun 24.
3
Mining the human plasma proteome with three-dimensional strategies by high-resolution Quadrupole Orbitrap Mass Spectrometry.
Anal Chim Acta. 2016 Jan 21;904:65-75. doi: 10.1016/j.aca.2015.11.001. Epub 2015 Nov 25.
4
Multiple solvent elution, a method to counter the effects of coelution and ion suppression in LC-MS analysis in bottom up proteomics.
J Chromatogr B Analyt Technol Biomed Life Sci. 2019 Aug 15;1124:256-264. doi: 10.1016/j.jchromb.2019.06.017. Epub 2019 Jun 15.
5
Proteomics technologies for the global identification and quantification of proteins.
Adv Protein Chem Struct Biol. 2010;80:1-44. doi: 10.1016/B978-0-12-381264-3.00001-1.
7
Concepts and strategies of soybean seed proteomics using the shotgun proteomics approach.
Expert Rev Proteomics. 2019 Sep;16(9):795-804. doi: 10.1080/14789450.2019.1654860. Epub 2019 Aug 13.
8
An automated multidimensional protein identification technology for shotgun proteomics.
Anal Chem. 2001 Dec 1;73(23):5683-90. doi: 10.1021/ac010617e.

引用本文的文献

1
Metabolomic and proteomic stratification of equine osteoarthritis.
Equine Vet J. 2025 Sep;57(5):1204-1218. doi: 10.1111/evj.14490. Epub 2025 Feb 19.
3
Spatiotemporal protein dynamics during early organogenesis in mouse conceptuses treated with valproic acid.
Neurotoxicol Teratol. 2023 Sep-Oct;99:107286. doi: 10.1016/j.ntt.2023.107286. Epub 2023 Jul 11.
5
Subcellular Fractionation for DIGE-Based Proteomics.
Methods Mol Biol. 2023;2596:351-362. doi: 10.1007/978-1-0716-2831-7_24.
6
Localization of EccA at the growing pole in Mycobacterium smegmatis.
BMC Microbiol. 2022 May 19;22(1):140. doi: 10.1186/s12866-022-02554-6.
9
Extracellular Matrix Disparities in an Mutant Mouse Model of Congenital Heart Disease.
Front Cardiovasc Med. 2020 May 29;7:93. doi: 10.3389/fcvm.2020.00093. eCollection 2020.
10
Optimization of Synovial Fluid Collection and Processing for NMR Metabolomics and LC-MS/MS Proteomics.
J Proteome Res. 2020 Jul 2;19(7):2585-2597. doi: 10.1021/acs.jproteome.0c00035. Epub 2020 Apr 7.

本文引用的文献

1
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
4
Large-scale phosphoproteomics analysis of whole saliva reveals a distinct phosphorylation pattern.
J Proteome Res. 2011 Apr 1;10(4):1728-36. doi: 10.1021/pr1010247. Epub 2011 Mar 1.
5
Hexapeptide libraries for enhanced protein PTM identification and relative abundance profiling in whole human saliva.
J Proteome Res. 2011 Mar 4;10(3):1052-61. doi: 10.1021/pr100857t. Epub 2011 Jan 14.
6
A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics.
J Proteomics. 2010 Oct 10;73(11):2092-123. doi: 10.1016/j.jprot.2010.08.009. Epub 2010 Sep 8.
7
Depletion of abundant plasma proteins and limitations of plasma proteomics.
J Proteome Res. 2010 Oct 1;9(10):4982-91. doi: 10.1021/pr100646w.
8
Decoding signalling networks by mass spectrometry-based proteomics.
Nat Rev Mol Cell Biol. 2010 Jun;11(6):427-39. doi: 10.1038/nrm2900. Epub 2010 May 12.
9
Equalizer technology--Equal rights for disparate beads.
Proteomics. 2010 Jun;10(11):2089-98. doi: 10.1002/pmic.200900767.
10
The Pfam protein families database.
Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22. doi: 10.1093/nar/gkp985. Epub 2009 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验