Department of Infection, Immunity and Biochemistry, Cardiff University, United Kingdom.
Adv Protein Chem Struct Biol. 2010;80:1-44. doi: 10.1016/B978-0-12-381264-3.00001-1.
This review provides an introduction for the nonspecialist to proteomics and in particular the major approaches available for global protein identification and quantification. Proteomics technologies offer considerable opportunities for improved biological understanding and biomarker discovery. The central platform for proteomics is tandem mass spectrometry (MS) but a number of other technologies, resources, and expertise are absolutely required to perform meaningful experiments. These include protein separation science (and protein biochemistry in general), genomics, and bioinformatics. There are a range of workflows available for protein (or peptide) separation prior to tandem MS and subsequent bioinformatics analysis to achieve protein identifications. The predominant approaches are 2D electrophoresis (2DE) and subsequent MS, liquid chromatography-MS (LC-MS), and GeLC-MS. Beyond protein identification, there are a number of well-established options available for protein quantification. Difference gel electrophoresis (DIGE) following 2DE is one option but MS-based methods (most commonly iTRAQ-Isobaric Tags for Relative and Absolute Quantification or SILAC-Stable Isotope Labeling by Amino Acids) are now the preferred options. Sample preparation is critical to performing good experiments and subcellular fractionation can additionally provide protein localization information compared with whole cell lysates. Differential detergent solubilization is another valid option. With biological fluids, it is possible to remove the most abundant proteins by immunodepletion. Sample enrichment is also used extensively in certain analyses and most commonly in phosphoproteomics with the initial purification of phosphopeptides. Proteomics produces considerable datasets and resources to facilitate the necessary extended analysis of this data are improving all the time. Beyond the opportunities afforded by proteomics there are definite challenges to achieving full proteomic coverage. Proteomes are highly complex and identifying and quantifying low abundance proteins is a significant issue. Additionally, the analysis of poorly soluble proteins, such as membrane proteins and multiprotein complexes, is difficult. However, it is without doubt that proteomics has already provided significant insights into biological function and this will continue as the technology continues to improve. We also anticipate that the promise of proteomics in terms of biomarker discovery will increasingly be realized.
这篇综述为非专业人士介绍蛋白质组学,特别是可用于全面鉴定和定量蛋白质的主要方法。蛋白质组学技术为深入了解生物学和发现生物标志物提供了巨大的机会。蛋白质组学的核心平台是串联质谱(MS),但要进行有意义的实验,还需要许多其他技术、资源和专业知识。这些包括蛋白质分离科学(以及一般的蛋白质生物化学)、基因组学和生物信息学。在进行串联 MS 和随后的生物信息学分析以实现蛋白质鉴定之前,有一系列适用于蛋白质(或肽)分离的工作流程。主要方法是二维电泳(2DE)和随后的 MS、液相色谱-MS(LC-MS)和 GeLC-MS。除了蛋白质鉴定之外,还有许多成熟的蛋白质定量方法可供选择。2DE 后的差异凝胶电泳(DIGE)是一种选择,但基于 MS 的方法(最常见的是 iTRAQ-相对和绝对定量同位素标记或 SILAC-氨基酸稳定同位素标记)现在是首选方法。样品制备对于进行良好的实验至关重要,与全细胞裂解物相比,亚细胞分级分离还可以提供蛋白质定位信息。差异去污剂溶解也是另一种有效的选择。对于生物体液,可以通过免疫沉淀去除最丰富的蛋白质。样品富集也广泛用于某些分析中,最常用于磷酸化蛋白质组学中,通过初始纯化磷酸肽。蛋白质组学产生了大量数据集,并且不断改进的资源有助于对这些数据进行必要的扩展分析。除了蛋白质组学提供的机会之外,实现全面蛋白质组覆盖还存在明确的挑战。蛋白质组非常复杂,鉴定和定量低丰度蛋白质是一个重大问题。此外,分析疏水性蛋白质,如膜蛋白和多蛋白复合物,具有挑战性。然而,毫无疑问,蛋白质组学已经为深入了解生物学功能提供了重要的见解,随着技术的不断改进,这将继续下去。我们还预计,蛋白质组学在发现生物标志物方面的前景将越来越得到实现。