文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用图拉普拉斯正则化改进生物网络重建

Improved biological network reconstruction using graph Laplacian regularization.

作者信息

Freschi Valerio

机构信息

DiSBeF-Department of Base Sciences and Fundamentals, University of Urbino, Urbino, Italy.

出版信息

J Comput Biol. 2011 Aug;18(8):987-96. doi: 10.1089/cmb.2010.0232. Epub 2011 Jun 24.


DOI:10.1089/cmb.2010.0232
PMID:21702693
Abstract

Biological networks reconstruction is a crucial step towards the functional characterization and elucidation of living cells. Computational methods for inferring the structure of these networks are of paramount importance since they provide valuable information regarding organization and behavior of the cell at a system level and also enable careful design of wet-lab experiments. Despite many recent advances, according to the scientific literature, there is room for improvements from both the efficiency and the accuracy point of view in link prediction algorithms. In this article, we propose a new method for the inference of biological networks that makes use of a notion of similarity between graph vertices within the framework of graph regularization for ranking the links to be predicted. The proposed approach results in more accurate classification rates in a wide range of experiments, while the computational complexity is reduced by two orders of magnitude with respect to many current state-of-the-art algorithms.

摘要

生物网络重建是朝着活细胞功能表征和阐明迈出的关键一步。用于推断这些网络结构的计算方法至关重要,因为它们在系统层面提供了有关细胞组织和行为的有价值信息,还能精心设计湿实验室实验。尽管最近有许多进展,但根据科学文献,从链路预测算法的效率和准确性角度来看仍有改进空间。在本文中,我们提出了一种用于生物网络推断的新方法,该方法在图正则化框架内利用图顶点之间的相似性概念对要预测的链路进行排序。在广泛的实验中,所提出的方法能得到更准确的分类率,同时相对于许多当前的先进算法,计算复杂度降低了两个数量级。

相似文献

[1]
Improved biological network reconstruction using graph Laplacian regularization.

J Comput Biol. 2011-8

[2]
Simultaneous inference of biological networks of multiple species from genome-wide data and evolutionary information: a semi-supervised approach.

Bioinformatics. 2009-8-17

[3]
Computational reconstruction of protein-protein interaction networks: algorithms and issues.

Methods Mol Biol. 2009

[4]
Genome-wide prediction of C. elegans genetic interactions.

Science. 2006-3-10

[5]
Supervised enzyme network inference from the integration of genomic data and chemical information.

Bioinformatics. 2005-6

[6]
Path matching and graph matching in biological networks.

J Comput Biol. 2007

[7]
Exploitation of genetic interaction network topology for the prediction of epistatic behavior.

Genomics. 2013-7-25

[8]
AVID: an integrative framework for discovering functional relationships among proteins.

BMC Bioinformatics. 2005-6-1

[9]
Biological network mapping and source signal deduction.

Bioinformatics. 2007-7-15

[10]
Hierarchical structure and the prediction of missing links in networks.

Nature. 2008-5-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索