文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用遗传交互网络拓扑结构预测上位性行为。

Exploitation of genetic interaction network topology for the prediction of epistatic behavior.

机构信息

Integrative Systems Biology Lab, Biological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia; Division of Medical Genetics, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA.

出版信息

Genomics. 2013 Oct;102(4):202-8. doi: 10.1016/j.ygeno.2013.07.010. Epub 2013 Jul 25.


DOI:10.1016/j.ygeno.2013.07.010
PMID:23892246
Abstract

Genetic interaction (GI) detection impacts the understanding of human disease and the ability to design personalized treatment. The mapping of every GI in most organisms is far from complete due to the combinatorial amount of gene deletions and knockdowns required. Computational techniques to predict new interactions based only on network topology have been developed in network science but never applied to GI networks. We show that topological prediction of GIs is possible with high precision and propose a graph dissimilarity index that is able to provide robust prediction in both dense and sparse networks. Computational prediction of GIs is a strong tool to aid high-throughput GI determination. The dissimilarity index we propose in this article is able to attain precise predictions that reduce the universe of candidate GIs to test in the lab.

摘要

遗传相互作用 (GI) 的检测影响着人们对人类疾病的理解和设计个性化治疗的能力。由于需要进行大量的基因缺失和敲低实验,大多数生物体中每一个 GI 的映射都远未完成。网络科学中已经开发出了仅基于网络拓扑结构来预测新相互作用的计算技术,但从未应用于 GI 网络。我们证明了基于拓扑结构预测 GI 是可行的,并且提出了一个图相似度指数,可以在密集和稀疏网络中提供稳健的预测。GI 的计算预测是辅助高通量 GI 确定的有力工具。本文提出的相似度指数能够进行精确预测,从而将候选 GI 的测试范围缩小到实验室中。

相似文献

[1]
Exploitation of genetic interaction network topology for the prediction of epistatic behavior.

Genomics. 2013-7-25

[2]
Computational reconstruction of protein-protein interaction networks: algorithms and issues.

Methods Mol Biol. 2009

[3]
Genome-wide prediction of C. elegans genetic interactions.

Science. 2006-3-10

[4]
Improved biological network reconstruction using graph Laplacian regularization.

J Comput Biol. 2011-8

[5]
Predicting genetic interactions with random walks on biological networks.

BMC Bioinformatics. 2009-1-12

[6]
Explorations in topology-delving underneath the surface of genetic interaction maps.

Mol Biosyst. 2009-12

[7]
Identification of functional modules using network topology and high-throughput data.

BMC Syst Biol. 2007-1-26

[8]
Where are we in genomics?

J Physiol Pharmacol. 2005-6

[9]
Network-guided genetic screening: building, testing and using gene networks to predict gene function.

Brief Funct Genomic Proteomic. 2008-5

[10]
Protein complex prediction with RNSC.

Methods Mol Biol. 2012

引用本文的文献

[1]
Predicting and explaining the impact of genetic disruptions and interactions on organismal viability.

Bioinformatics. 2022-9-2

[2]
To Embed or Not: Network Embedding as a Paradigm in Computational Biology.

Front Genet. 2019-5-1

[3]
GNE: a deep learning framework for gene network inference by aggregating biological information.

BMC Syst Biol. 2019-4-5

[4]
Improved prediction of missing protein interactome links via anomaly detection.

Appl Netw Sci. 2017

[5]
The latent geometry of the human protein interaction network.

Bioinformatics. 2018-8-15

[6]
Prediction of Genetic Interactions Using Machine Learning and Network Properties.

Front Bioeng Biotechnol. 2015-10-26

[7]
Mining protein interactomes to improve their reliability and support the advancement of network medicine.

Front Genet. 2015-9-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索