Suppr超能文献

基于基因组数据与化学信息整合的监督式酶网络推断

Supervised enzyme network inference from the integration of genomic data and chemical information.

作者信息

Yamanishi Yoshihiro, Vert Jean-Philippe, Kanehisa Minoru

机构信息

Bioinformatics Center, Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto 611-0011, Japan.

出版信息

Bioinformatics. 2005 Jun;21 Suppl 1:i468-77. doi: 10.1093/bioinformatics/bti1012.

Abstract

MOTIVATION

The metabolic network is an important biological network which relates enzyme proteins and chemical compounds. A large number of metabolic pathways remain unknown nowadays, and many enzymes are missing even in known metabolic pathways. There is, therefore, an incentive to develop methods to reconstruct the unknown parts of the metabolic network and to identify genes coding for missing enzymes.

RESULTS

This paper presents new methods to infer enzyme networks from the integration of multiple genomic data and chemical information, in the framework of supervised graph inference. The originality of the methods is the introduction of chemical compatibility as a constraint for refining the network predicted by the network inference engine. The chemical compatibility between two enzymes is obtained automatically from the information encoded by their Enzyme Commission (EC) numbers. The proposed methods are tested and compared on their ability to infer the enzyme network of the yeast Saccharomyces cerevisiae from four datasets for enzymes with assigned EC numbers: gene expression data, protein localization data, phylogenetic profiles and chemical compatibility information. It is shown that the prediction accuracy of the network reconstruction consistently improves owing to the introduction of chemical constraints, the use of a supervised approach and the weighted integration of multiple datasets. Finally, we conduct a comprehensive prediction of a global enzyme network consisting of all enzyme candidate proteins of the yeast to obtain new biological findings.

AVAILABILITY

Softwares are available upon request.

摘要

动机

代谢网络是一种重要的生物网络,它关联着酶蛋白和化合物。如今,大量的代谢途径仍不为人知,甚至在已知的代谢途径中也存在许多缺失的酶。因此,有必要开发方法来重建代谢网络中未知的部分,并识别编码缺失酶的基因。

结果

本文提出了在监督图推理框架下,通过整合多种基因组数据和化学信息来推断酶网络的新方法。这些方法的独特之处在于引入化学兼容性作为约束条件,以优化网络推理引擎预测的网络。两种酶之间的化学兼容性可根据其酶委员会(EC)编号所编码的信息自动获得。本文所提出的方法针对从四个带有指定EC编号的酶数据集(基因表达数据、蛋白质定位数据、系统发育谱和化学兼容性信息)推断酿酒酵母酶网络的能力进行了测试和比较。结果表明,由于引入了化学约束、使用了监督方法以及对多个数据集进行加权整合,网络重建的预测准确性持续提高。最后,我们对由酵母所有酶候选蛋白组成的全局酶网络进行了全面预测,以获得新的生物学发现。

可用性

软件可根据要求提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验