Suppr超能文献

句子其余部分的情况不确定。

Uncertainty about the rest of the sentence.

机构信息

Department of Linguistics and Germanic, Slavic, Asian and African Languages, Michigan State University.

出版信息

Cogn Sci. 2006 Jul 8;30(4):643-72. doi: 10.1207/s15516709cog0000_64.

Abstract

A word-by-word human sentence processing complexity metric is presented. This metric formalizes the intuition that comprehenders have more trouble on words contributing larger amounts of information about the syntactic structure of the sentence as a whole. The formalization is in terms of the conditional entropy of grammatical continuations, given the words that have been heard so far. To calculate the predictions of this metric, Wilson and Carroll's (1954) original entropy reduction idea is extended to infinite languages. This is demonstrated with a mildly context-sensitive language that includes relative clauses formed on a variety of grammatical relations across the Accessibility Hierarchy of Keenan and Comrie (1977). Predictions are derived that correlate significantly with repetition accuracy results obtained in a sentence-memory experiment (Keenan & Hawkins, 1987).

摘要

提出了一种逐字的人类句子处理复杂度度量。该度量形式化了这样一种直觉,即理解者在处理对整个句子的句法结构贡献更多信息的单词时会遇到更多困难。这种形式化是基于给定迄今为止听到的单词的语法延续的条件熵。为了计算该度量的预测值,Wilson 和 Carroll(1954)的原始熵减少思想被扩展到无限语言。这是通过使用一种轻度上下文敏感的语言来证明的,该语言包括在 Keenan 和 Comrie(1977)的可及性层次结构上的各种语法关系上形成的关系从句。得出的预测与在句子记忆实验(Keenan 和 Hawkins,1987)中获得的重复准确性结果显著相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验