Suppr超能文献

AMDORAP:基于高分辨 LC-MS 的非靶向代谢组学分析。

AMDORAP: non-targeted metabolic profiling based on high-resolution LC-MS.

机构信息

Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.

出版信息

BMC Bioinformatics. 2011 Jun 24;12:259. doi: 10.1186/1471-2105-12-259.

Abstract

BACKGROUND

Liquid chromatography-mass spectrometry (LC-MS) utilizing the high-resolution power of an orbitrap is an important analytical technique for both metabolomics and proteomics. Most important feature of the orbitrap is excellent mass accuracy. Thus, it is necessary to convert raw data to accurate and reliable m/z values for metabolic fingerprinting by high-resolution LC-MS.

RESULTS

In the present study, we developed a novel, easy-to-use and straightforward m/z detection method, AMDORAP. For assessing the performance, we used real biological samples, Bacillus subtilis strains 168 and MGB874, in the positive mode by LC-orbitrap. For 14 identified compounds by measuring the authentic compounds, we compared obtained m/z values with other LC-MS processing tools. The errors by AMDORAP were distributed within ±3 ppm and showed the best performance in m/z value accuracy.

CONCLUSIONS

Our method can detect m/z values of biological samples much more accurately than other LC-MS analysis tools. AMDORAP allows us to address the relationships between biological effects and cellular metabolites based on accurate m/z values. Obtaining the accurate m/z values from raw data should be indispensable as a starting point for comparative LC-orbitrap analysis. AMDORAP is freely available under an open-source license at http://amdorap.sourceforge.net/.

摘要

背景

利用轨道阱的高分辨率能力的液相色谱-质谱(LC-MS)是代谢组学和蛋白质组学的重要分析技术。轨道阱的最重要特征是出色的质量精度。因此,有必要将原始数据转换为准确可靠的 m/z 值,以便通过高分辨率 LC-MS 进行代谢指纹图谱分析。

结果

在本研究中,我们开发了一种新颖、易用且直接的 m/z 检测方法,AMDORAP。为了评估性能,我们使用了真实的生物样本,枯草芽孢杆菌 168 株和 MGB874 株,在正模式下通过 LC-轨道阱进行检测。对于通过测量真实化合物鉴定出的 14 种化合物,我们将获得的 m/z 值与其他 LC-MS 处理工具进行了比较。AMDORAP 的误差分布在±3 ppm 以内,在 m/z 值准确性方面表现出最佳性能。

结论

与其他 LC-MS 分析工具相比,我们的方法可以更准确地检测生物样本的 m/z 值。AMDORAP 使我们能够基于准确的 m/z 值来解决生物学效应与细胞代谢物之间的关系。从原始数据中获得准确的 m/z 值应该是进行比较性 LC-轨道阱分析的不可或缺的起点。AMDORAP 可在 http://amdorap.sourceforge.net/ 以开源许可证免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa86/3149581/d3b339dc4ec5/1471-2105-12-259-1.jpg

相似文献

1
AMDORAP: non-targeted metabolic profiling based on high-resolution LC-MS.
BMC Bioinformatics. 2011 Jun 24;12:259. doi: 10.1186/1471-2105-12-259.
3
Measurement of Metabolome Samples Using Liquid Chromatography-Mass Spectrometry, Data Acquisition, and Processing.
Cold Spring Harb Protoc. 2016 Dec 1;2016(12):2016/12/pdb.prot091561. doi: 10.1101/pdb.prot091561.
5
8
Development of high-performance chemical isotope labeling LC-MS for profiling the human fecal metabolome.
Anal Chem. 2015 Jan 20;87(2):829-36. doi: 10.1021/ac503619q. Epub 2014 Dec 25.
9
Tailored liquid chromatography-mass spectrometry analysis improves the coverage of the intracellular metabolome of HepaRG cells.
J Chromatogr A. 2017 Mar 3;1487:168-178. doi: 10.1016/j.chroma.2017.01.050. Epub 2017 Jan 23.

引用本文的文献

1
Mining plant metabolomes: Methods, applications, and perspectives.
Plant Commun. 2021 Sep 4;2(5):100238. doi: 10.1016/j.xplc.2021.100238. eCollection 2021 Sep 13.
2
The metaRbolomics Toolbox in Bioconductor and beyond.
Metabolites. 2019 Sep 23;9(10):200. doi: 10.3390/metabo9100200.
3
Comparative metabolic profiling of and during cold acclimation.
Hortic Res. 2019 Jan 1;6:8. doi: 10.1038/s41438-018-0083-5. eCollection 2019.
5
Improving peak detection in high-resolution LC/MS metabolomics data using preexisting knowledge and machine learning approach.
Bioinformatics. 2014 Oct 15;30(20):2941-8. doi: 10.1093/bioinformatics/btu430. Epub 2014 Jul 7.
6
Data Mining Methods for Omics and Knowledge of Crude Medicinal Plants toward Big Data Biology.
Comput Struct Biotechnol J. 2013 Mar 23;4:e201301010. doi: 10.5936/csbj.201301010. eCollection 2013.
7
Analyzing LC/MS metabolic profiling data in the context of existing metabolic networks.
Curr Metabolomics. 2013 Jan 1;1(1):83-91. doi: 10.2174/2213235X11301010084.
8
Sum of the parts: mass spectrometry-based metabolomics.
Biochemistry. 2013 Jun 4;52(22):3829-40. doi: 10.1021/bi400060e. Epub 2013 Mar 7.
9
Hybrid feature detection and information accumulation using high-resolution LC-MS metabolomics data.
J Proteome Res. 2013 Mar 1;12(3):1419-27. doi: 10.1021/pr301053d. Epub 2013 Feb 12.

本文引用的文献

1
Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets.
Bioinformatics. 2011 Apr 15;27(8):1108-12. doi: 10.1093/bioinformatics/btr079. Epub 2011 Feb 16.
2
Dynamics of time-lagged gene-to-metabolite networks of Escherichia coli elucidated by integrative omics approach.
OMICS. 2011 Jan-Feb;15(1-2):15-23. doi: 10.1089/omi.2010.0074. Epub 2010 Sep 23.
5
High-resolution mass spectrometers.
Annu Rev Anal Chem (Palo Alto Calif). 2008;1:579-99. doi: 10.1146/annurev.anchem.1.031207.112945.
9
Highly sensitive feature detection for high resolution LC/MS.
BMC Bioinformatics. 2008 Nov 28;9:504. doi: 10.1186/1471-2105-9-504.
10
Mass spectrometry for proteomics.
Curr Opin Chem Biol. 2008 Oct;12(5):483-90. doi: 10.1016/j.cbpa.2008.07.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验