G0 Cell Unit, Okinawa Institute of Science and Technology, Onna, Okinawa, Japan.
BMC Bioinformatics. 2010 Jul 23;11:395. doi: 10.1186/1471-2105-11-395.
Mass spectrometry (MS) coupled with online separation methods is commonly applied for differential and quantitative profiling of biological samples in metabolomic as well as proteomic research. Such approaches are used for systems biology, functional genomics, and biomarker discovery, among others. An ongoing challenge of these molecular profiling approaches, however, is the development of better data processing methods. Here we introduce a new generation of a popular open-source data processing toolbox, MZmine 2.
A key concept of the MZmine 2 software design is the strict separation of core functionality and data processing modules, with emphasis on easy usability and support for high-resolution spectra processing. Data processing modules take advantage of embedded visualization tools, allowing for immediate previews of parameter settings. Newly introduced functionality includes the identification of peaks using online databases, MSn data support, improved isotope pattern support, scatter plot visualization, and a new method for peak list alignment based on the random sample consensus (RANSAC) algorithm. The performance of the RANSAC alignment was evaluated using synthetic datasets as well as actual experimental data, and the results were compared to those obtained using other alignment algorithms.
MZmine 2 is freely available under a GNU GPL license and can be obtained from the project website at: http://mzmine.sourceforge.net/. The current version of MZmine 2 is suitable for processing large batches of data and has been applied to both targeted and non-targeted metabolomic analyses.
质谱(MS)与在线分离方法相结合,通常用于代谢组学和蛋白质组学研究中生物样本的差异和定量分析。这些方法用于系统生物学、功能基因组学和生物标志物发现等。然而,这些分子分析方法的一个持续挑战是开发更好的数据处理方法。在这里,我们介绍了一个流行的开源数据处理工具箱的新一代,即 MZmine 2。
MZmine 2 软件设计的一个关键概念是严格分离核心功能和数据处理模块,重点是易用性和对高分辨率光谱处理的支持。数据处理模块利用嵌入式可视化工具,可以即时预览参数设置。新引入的功能包括使用在线数据库识别峰、MSn 数据支持、改进的同位素模式支持、散点图可视化以及基于随机样本共识(RANSAC)算法的峰列表对齐新方法。使用合成数据集和实际实验数据评估了 RANSAC 对齐的性能,并将结果与使用其他对齐算法获得的结果进行了比较。
MZmine 2 可根据 GNU GPL 许可证免费获得,并可从项目网站 http://mzmine.sourceforge.net/ 获取。当前版本的 MZmine 2 适用于处理大量数据,并已应用于靶向和非靶向代谢组学分析。