Research Center for Genetic Medicine, Children’s National Medical Center, 111 Michigan Ave NW, Washington, DC 20010, USA.
Am J Pathol. 2011 Jul;179(1):12-22. doi: 10.1016/j.ajpath.2011.03.050. Epub 2011 May 23.
The identification of the Duchenne muscular dystrophy gene and protein in the late 1980s led to high hopes of rapid translation to molecular therapeutics. These hopes were fueled by early reports of delivering new functional genes to dystrophic muscle in mouse models using gene therapy and stem cell transplantation. However, significant barriers have thwarted translation of these approaches to true therapies, including insufficient therapeutic material (eg, cells and viral vectors), challenges in systemic delivery, and immunological hurdles. An alternative approach is to repair the patient's own gene. Two innovative small-molecule approaches have emerged as front-line molecular therapeutics: exon skipping and stop codon read through. Both approaches are in human clinical trials and aim to coax dystrophin protein production from otherwise inactive mutant genes. In the clinically severe dog model of Duchenne muscular dystrophy, the exon-skipping approach recently improved multiple functional outcomes. We discuss the status of these two methods aimed at inducing de novo dystrophin production from mutant genes and review implications for other disorders.
20 世纪 80 年代末,Duchenne 型肌营养不良症基因和蛋白的鉴定,使人们对快速转化为分子治疗寄予厚望。这些希望源于早期的报道,即通过基因治疗和干细胞移植,将新的功能性基因递送到小鼠模型中的营养不良肌肉中。然而,这些方法向真正的治疗方法的转化存在重大障碍,包括治疗材料不足(例如,细胞和病毒载体)、全身递送的挑战以及免疫障碍。另一种方法是修复患者自身的基因。两种创新的小分子方法已成为一线分子治疗方法:外显子跳跃和终止密码子通读。这两种方法都在人体临床试验中,旨在从原本无活性的突变基因中诱导产生肌营养不良蛋白。在临床上严重的 Duchenne 型肌营养不良犬模型中,外显子跳跃方法最近改善了多种功能结果。我们讨论了这两种方法的现状,旨在从突变基因中诱导产生新的肌营养不良蛋白,并探讨其对其他疾病的影响。