Suppr超能文献

利用分析沉降速度提取热力学关联。

The use of analytical sedimentation velocity to extract thermodynamic linkage.

机构信息

Department of Molecular and Cell Biology, University of Connecticut Storrs, CT 06269, USA.

出版信息

Biophys Chem. 2011 Nov;159(1):120-8. doi: 10.1016/j.bpc.2011.05.014. Epub 2011 May 27.

Abstract

For 25 years, the Gibbs Conference on Biothermodynamics has focused on the use of thermodynamics to extract information about the mechanism and regulation of biological processes. This includes the determination of equilibrium constants for macromolecular interactions by high precision physical measurements. These approaches further reveal thermodynamic linkages to ligand binding events. Analytical ultracentrifugation has been a fundamental technique in the determination of macromolecular reaction stoichiometry and energetics for 85 years. This approach is highly amenable to the extraction of thermodynamic couplings to small molecule binding in the overall reaction pathway. In the 1980s this approach was extended to the use of sedimentation velocity techniques, primarily by the analysis of tubulin-drug interactions by Na and Timasheff. This transport method necessarily incorporates the complexity of both hydrodynamic and thermodynamic nonideality. The advent of modern computational methods in the last 20 years has subsequently made the analysis of sedimentation velocity data for interacting systems more robust and rigorous. Here we review three examples where sedimentation velocity has been useful at extracting thermodynamic information about reaction stoichiometry and energetics. Approaches to extract linkage to small molecule binding and the influence of hydrodynamic nonideality are emphasized. These methods are shown to also apply to the collection of fluorescence data with the new Aviv FDS.

摘要

25 年来,吉布斯生物热力学会议一直专注于利用热力学从机制和调节方面提取生物过程的信息。这包括通过高精度物理测量确定大分子相互作用的平衡常数。这些方法进一步揭示了与配体结合事件的热力学联系。分析超速离心法是确定大分子反应计量和 85 年来能量学的基本技术。这种方法非常适合从小分子结合的整体反应途径中提取热力学偶联。在 20 世纪 80 年代,这种方法扩展到使用沉降速度技术,主要是通过 Na 和 Timasheff 分析微管蛋白-药物相互作用。这种运输方法必然包含了流体动力学和热力学非理想性的复杂性。在过去的 20 年中,现代计算方法的出现使得分析相互作用系统的沉降速度数据更加稳健和严格。在这里,我们回顾了三个例子,其中沉降速度有助于提取关于反应计量和能量学的热力学信息。强调了提取与小分子结合的联系以及流体动力学非理想性的影响。这些方法也适用于使用新的 Aviv FDS 收集荧光数据。

相似文献

1
The use of analytical sedimentation velocity to extract thermodynamic linkage.利用分析沉降速度提取热力学关联。
Biophys Chem. 2011 Nov;159(1):120-8. doi: 10.1016/j.bpc.2011.05.014. Epub 2011 May 27.
6
Energetics of SecA dimerization.SecA 二聚体的能量学。
J Mol Biol. 2011 Apr 22;408(1):87-98. doi: 10.1016/j.jmb.2011.02.006. Epub 2011 Feb 15.
7
Assembly of the translocase motor onto the preprotein-conducting channel.转位酶马达组装到前体蛋白传导通道上。
Mol Microbiol. 2008 Oct;70(2):311-22. doi: 10.1111/j.1365-2958.2008.06402.x. Epub 2008 Aug 22.
8
SecA folds via a dimeric intermediate.SecA通过二聚体中间体折叠。
Biochemistry. 2000 Sep 26;39(38):11667-76. doi: 10.1021/bi000299y.
9
Thermodynamics of the protein translocation.蛋白质转运的热力学
Methods Enzymol. 2009;466:273-91. doi: 10.1016/S0076-6879(09)66012-2. Epub 2009 Nov 13.

引用本文的文献

8
(S)Pinning down protein interactions by NMR.通过核磁共振确定蛋白质相互作用
Protein Sci. 2017 Mar;26(3):436-451. doi: 10.1002/pro.3105. Epub 2017 Feb 14.

本文引用的文献

1
Heparin activates PKR by inducing dimerization.肝素通过诱导二聚化激活 PKR。
J Mol Biol. 2011 Nov 11;413(5):973-84. doi: 10.1016/j.jmb.2011.09.025. Epub 2011 Sep 28.
2
Ultra-weak reversible protein-protein interactions.超弱可逆蛋白质-蛋白质相互作用。
Methods. 2011 May;54(1):157-66. doi: 10.1016/j.ymeth.2011.02.006. Epub 2011 Feb 19.
3
Energetics of SecA dimerization.SecA 二聚体的能量学。
J Mol Biol. 2011 Apr 22;408(1):87-98. doi: 10.1016/j.jmb.2011.02.006. Epub 2011 Feb 15.
4
Magnesium-dependent interaction of PKR with adenovirus VAI.PKR 与腺病毒 VAI 的镁依赖性相互作用。
J Mol Biol. 2010 Oct 1;402(4):638-44. doi: 10.1016/j.jmb.2010.08.015. Epub 2010 Aug 14.
10
SecA: a tale of two protomers.SecA:两个单体的故事。
Mol Microbiol. 2010 Jun 1;76(5):1070-81. doi: 10.1111/j.1365-2958.2010.07176.x. Epub 2010 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验