Suppr超能文献

基于词典的计算模型能优于最好的线性模型吗?

Can dictionary-based computational models outperform the best linear ones?

机构信息

Department of Communications, Computer, and System Sciences (DIST), University of Genoa, Via Opera Pia 13, 16145 Genova, Italy.

出版信息

Neural Netw. 2011 Oct;24(8):881-7. doi: 10.1016/j.neunet.2011.05.014. Epub 2011 Jun 12.

Abstract

Approximation capabilities of two types of computational models are explored: dictionary-based models (i.e., linear combinations of n-tuples of basis functions computable by units belonging to a set called "dictionary") and linear ones (i.e., linear combinations of n fixed basis functions). The two models are compared in terms of approximation rates, i.e., speeds of decrease of approximation errors for a growing number n of basis functions. Proofs of upper bounds on approximation rates by dictionary-based models are inspected, to show that for individual functions they do not imply estimates for dictionary-based models that do not hold also for some linear models. Instead, the possibility of getting faster approximation rates by dictionary-based models is demonstrated for worst-case errors in approximation of suitable sets of functions. For such sets, even geometric upper bounds hold.

摘要

探索了两种类型的计算模型的逼近能力

基于字典的模型(即,由属于称为“字典”的集合的单元可计算的 n 元组的线性组合)和线性模型(即,n 个固定基函数的线性组合)。根据逼近率(即,随着基函数数量 n 的增加,逼近误差的减小速度)对这两种模型进行了比较。检查了基于字典的模型逼近率的上界证明,以表明对于个别函数,它们并不意味着对于某些线性模型不成立的基于字典的模型的估计。相反,对于合适的函数集的逼近中的最坏情况误差,证明了基于字典的模型可以获得更快的逼近率的可能性。对于这样的集合,甚至可以保持几何上的上界。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验