基于受试者间或会话间一致性测试独立成分分析混合矩阵。

Testing the ICA mixing matrix based on inter-subject or inter-session consistency.

机构信息

Dept of Mathematics, University of Helsinki, Finland.

出版信息

Neuroimage. 2011 Sep 1;58(1):122-36. doi: 10.1016/j.neuroimage.2011.05.086. Epub 2011 Jun 17.

Abstract

Independent component analysis (ICA) is increasingly used for analyzing brain imaging data. ICA typically gives a large number of components, many of which may be just random, due to insufficient sample size, violations of the model, or algorithmic problems. Few methods are available for computing the statistical significance (reliability) of the components. We propose to approach this problem by performing ICA separately on a number of subjects, and finding components which are sufficiently consistent (similar) over subjects. Similarity is defined here as the similarity of the mixing coefficients, which usually correspond to spatial patterns in EEG and MEG. The threshold of what is "sufficient" is rigorously defined by a null hypothesis under which the independent components are random orthogonal components in the whitened space. Components which are consistent in different subjects are found by clustering under the constraint that a cluster can only contain one source from each subject, and by constraining the number of the false positives based on the null hypothesis. Instead of different subjects, the method can also be applied on different recording sessions from a single subject. The testing method is particularly applicable to EEG and MEG analysis.

摘要

独立成分分析(ICA)越来越多地用于分析脑成像数据。由于样本量不足、违反模型或算法问题,ICA 通常会产生大量的成分,其中许多成分可能只是随机的。目前很少有方法可用于计算成分的统计显著性(可靠性)。我们建议通过在多个受试者上分别进行 ICA,并找到在受试者之间足够一致(相似)的成分来解决此问题。这里的相似性定义为混合系数的相似性,混合系数通常对应于 EEG 和 MEG 中的空间模式。“足够”的阈值是通过独立成分在白化空间中是随机正交成分的零假设严格定义的。通过在约束条件下找到不同受试者之间一致的成分,即一个聚类只能包含每个受试者的一个源,并且根据零假设基于假阳性的数量进行约束,可以找到聚类。该方法不仅可以应用于不同的受试者,还可以应用于单个受试者的不同记录会话。该测试方法特别适用于 EEG 和 MEG 分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索