Suppr超能文献

改进脑磁图源定位:一种基于独立成分分析的完全去除伪迹的自动化方法。

Improving MEG source localizations: an automated method for complete artifact removal based on independent component analysis.

作者信息

Mantini D, Franciotti R, Romani G L, Pizzella V

机构信息

Institute of Advanced Biomedical Technologies, G. D'Annunzio University Foundation, Università degli Studi di Chieti, Via dei Vestini 33, Chieti, Italy.

出版信息

Neuroimage. 2008 Mar 1;40(1):160-73. doi: 10.1016/j.neuroimage.2007.11.022. Epub 2007 Dec 3.

Abstract

The major limitation for the acquisition of high-quality magnetoencephalography (MEG) recordings is the presence of disturbances of physiological and technical origins: eye movements, cardiac signals, muscular contractions, and environmental noise are serious problems for MEG signal analysis. In the last years, multi-channel MEG systems have undergone rapid technological developments in terms of noise reduction, and many processing methods have been proposed for artifact rejection. Independent component analysis (ICA) has already shown to be an effective and generally applicable technique for concurrently removing artifacts and noise from the MEG recordings. However, no standardized automated system based on ICA has become available so far, because of the intrinsic difficulty in the reliable categorization of the source signals obtained with this technique. In this work, approximate entropy (ApEn), a measure of data regularity, is successfully used for the classification of the signals produced by ICA, allowing for an automated artifact rejection. The proposed method has been tested using MEG data sets collected during somatosensory, auditory and visual stimulation. It was demonstrated to be effective in attenuating both biological artifacts and environmental noise, in order to reconstruct clear signals that can be used for improving brain source localizations.

摘要

获取高质量脑磁图(MEG)记录的主要限制在于存在生理和技术来源的干扰:眼球运动、心脏信号、肌肉收缩以及环境噪声都是MEG信号分析中的严重问题。在过去几年中,多通道MEG系统在降噪方面经历了快速的技术发展,并且已经提出了许多用于去除伪迹的处理方法。独立成分分析(ICA)已被证明是一种从MEG记录中同时去除伪迹和噪声的有效且普遍适用的技术。然而,由于使用该技术获得的源信号可靠分类存在内在困难,到目前为止尚未出现基于ICA的标准化自动化系统。在这项工作中,近似熵(ApEn),一种数据规律性的度量,成功用于对ICA产生的信号进行分类,从而实现自动去除伪迹。所提出的方法已使用在体感、听觉和视觉刺激期间收集的MEG数据集进行了测试。结果表明,该方法在衰减生物伪迹和环境噪声方面均有效,以便重建可用于改善脑源定位的清晰信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验