Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Tyneside, UK.
Oncogene. 2012 Jan 12;31(2):251-64. doi: 10.1038/onc.2011.229. Epub 2011 Jun 27.
The stress-inducible transcription factor, nuclear factor (NF)-κB induces genes involved in proliferation and apoptosis. Aberrant NF-κB activity is common in cancer and contributes to therapeutic-resistance. Poly(ADP-ribose) polymerase-1 (PARP-1) is activated during DNA strand break repair and is a known transcriptional co-regulator. Here, we investigated the role of PARP-1 function during NF-κB activation using p65 small interfering RNA (siRNA), PARP siRNA or the potent PARP-1 inhibitor, AG-014699. Survival and apoptosis assays showed that NF-κB p65(-/-) cells were more sensitive to ionizing radiation (IR) than p65(+/+) cells. Co-incubation with p65 siRNA, PARP siRNA or AG-014699 radio-sensitized p65(+/+), but not p65(-/-) cells, demonstrating that PARP-1 mediates its effects on survival via NF-κB. Single-strand break (SSB) repair kinetics, and the effect SSB repair inhibition by AG-014699 were similar in p65(+/+) and p65(-/-) cells. As preventing SSB repair did not radio-sensitize p65(-/-) cells, we conclude that radio-sensitization by AG-014699 is due to downstream inhibition of NF-κB activation, and independent of SSB repair inhibition. PARP-1 catalytic activity was essential for IR-induced p65 DNA binding and NF-κB-dependent gene transcription, whereas for tumor necrosis factor (TNF)-α-treated cells, PARP-1 protein alone was sufficient. We hypothesize that this stimulus-dependent differential is mediated via stimulation of the poly(ADP-ribose) polymer, which was induced following IR, not TNF-α. Targeting DNA damage-activated NF-κB using AG-014699 may therefore overcome toxicity observed with classical NF-κB inhibitors without compromising other vital inflammatory functions. These data highlight the potential of PARP-1 inhibitors to overcome NF-κB-mediated therapeutic resistance and widens the spectrum of cancers in which these agents may be utilized.
应激诱导转录因子核因子(NF)-κB 诱导参与增殖和凋亡的基因。异常的 NF-κB 活性在癌症中很常见,并导致治疗耐药。聚(ADP-核糖)聚合酶-1(PARP-1)在 DNA 链断裂修复过程中被激活,是已知的转录共调节因子。在这里,我们使用 p65 小干扰 RNA(siRNA)、PARP siRNA 或强效 PARP-1 抑制剂 AG-014699 研究了 PARP-1 功能在 NF-κB 激活过程中的作用。存活和凋亡测定表明,p65(-/-)细胞比 p65(+/+)细胞对电离辐射(IR)更敏感。与 p65 siRNA、PARP siRNA 或 AG-014699 共孵育可使 p65(+/+)细胞而不是 p65(-/-)细胞放射敏感,表明 PARP-1 通过 NF-κB 介导其对存活的影响。单链断裂 (SSB) 修复动力学以及 AG-014699 对 SSB 修复的抑制作用在 p65(+/+)和 p65(-/-)细胞中相似。由于防止 SSB 修复不会使 p65(-/-)细胞放射敏感,我们得出结论,AG-014699 的放射增敏作用是由于 NF-κB 激活的下游抑制,而不是 SSB 修复抑制。PARP-1 催化活性对于 IR 诱导的 p65 DNA 结合和 NF-κB 依赖性基因转录是必需的,而对于 TNF-α 处理的细胞,PARP-1 蛋白本身就足够了。我们假设这种刺激依赖性差异是通过诱导的聚(ADP-核糖)聚合物介导的,该聚合物在 IR 后而不是 TNF-α 后被诱导。使用 AG-014699 靶向 DNA 损伤激活的 NF-κB 可能会克服使用经典 NF-κB 抑制剂观察到的毒性,而不会损害其他重要的炎症功能。这些数据强调了 PARP-1 抑制剂克服 NF-κB 介导的治疗耐药性的潜力,并拓宽了这些药物可用于的癌症范围。