Suppr超能文献

聚(ADP-核糖)聚合酶-1诱导的NAD⁺耗竭通过阻止p65去乙酰化促进核因子-κB转录活性。

Poly(ADP-ribose) polymerase-1-induced NAD(+) depletion promotes nuclear factor-κB transcriptional activity by preventing p65 de-acetylation.

作者信息

Kauppinen Tiina M, Gan Li, Swanson Raymond A

机构信息

Department of Neurology, University of California, San Francisco, CA 94121, USA.

出版信息

Biochim Biophys Acta. 2013 Aug;1833(8):1985-91. doi: 10.1016/j.bbamcr.2013.04.005. Epub 2013 Apr 15.

Abstract

NF-κB is a transcription factor that integrates pro-inflammatory and pro-survival responses in diverse cell types. The activity of NF-κB is regulated in part by acetylation of its p65 subunit at lysine 310, which is required for transcription complex formation. De-acetylation at this site is performed by sirtuin 1(SIRT1) and possibly other sirtuins in an NAD(+) dependent manner, such that SIRT1 inhibition promotes NF-κB transcriptional activity. It is unknown, however, whether changes in NAD(+) levels can influence p65 acetylation and cellular inflammatory responses. Poly(ADP-ribose)-1 (PARP-1) is an abundant nuclear enzyme that consumes NAD(+) in the process of forming (ADP-ribose)polymers on target proteins, and extensive PARP-1 activation can reduce intracellular NAD(+) concentrations. Here we tested the idea that PARP-1 activation can regulate NF-κB transcriptional activity by reducing NAD(+) concentrations and thereby inhibiting de-acetylation of p65. Primary astrocyte cultures were treated with the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) to induce PARP-1 activation. This resulted in sustained acetylation of p65 and increased NF-κB transcriptional activity as monitored by a κB-driven eGFP reporter gene. These effects of MNNG were negated by a PARP-1 inhibitor, in PARP-1(-/-) cells, and in PARP-1(-/-) cells transfected with a catalytically inactive PARP-1 construct, thus confirming that these effects are mediated by PARP-1 catalytic activity. The effects of PARP-1 activation were replicated by a SIRT1 inhibitor, EX-527, and were reversed by exogenous NAD(+). These findings demonstrate that PARP-1-induced changes in NAD(+) levels can modulate NF-κB transcriptional activity through effects on p65 acetylation.

摘要

核因子κB(NF-κB)是一种转录因子,可整合多种细胞类型中的促炎和促生存反应。NF-κB的活性部分受其p65亚基赖氨酸310位点乙酰化的调节,这是转录复合物形成所必需的。该位点的去乙酰化由沉默调节蛋白1(SIRT1)以及可能的其他沉默调节蛋白以烟酰胺腺嘌呤二核苷酸(NAD(+))依赖的方式进行,因此SIRT1抑制可促进NF-κB的转录活性。然而,NAD(+)水平的变化是否会影响p65的乙酰化和细胞炎症反应尚不清楚。聚(ADP-核糖)-1(PARP-1)是一种丰富的核酶,在靶蛋白上形成(ADP-核糖)聚合物的过程中消耗NAD(+),广泛的PARP-1激活会降低细胞内NAD(+)浓度。在此,我们测试了这样一种观点,即PARP-1激活可通过降低NAD(+)浓度,从而抑制p65的去乙酰化来调节NF-κB的转录活性。用烷基化剂N-甲基-N'-硝基-N-亚硝基胍(MNNG)处理原代星形胶质细胞培养物以诱导PARP-1激活。这导致p65持续乙酰化,并增加了NF-κB的转录活性,这通过κB驱动的绿色荧光蛋白(eGFP)报告基因进行监测。MNNG的这些作用被PARP-1抑制剂、在PARP-1基因敲除(PARP-1(-/-))细胞以及转染了无催化活性PARP-1构建体的PARP-1(-/-)细胞所抵消,从而证实这些作用是由PARP-1的催化活性介导的。PARP-1激活的作用可被SIRT1抑制剂EX-527复制,并被外源性NAD(+)逆转。这些发现表明,PARP-1诱导的NAD(+)水平变化可通过影响p65乙酰化来调节NF-κB的转录活性。

相似文献

1
Poly(ADP-ribose) polymerase-1-induced NAD(+) depletion promotes nuclear factor-κB transcriptional activity by preventing p65 de-acetylation.
Biochim Biophys Acta. 2013 Aug;1833(8):1985-91. doi: 10.1016/j.bbamcr.2013.04.005. Epub 2013 Apr 15.
4
Flavone as PARP-1 inhibitor: its effect on lipopolysaccharide induced gene-expression.
Eur J Pharmacol. 2007 Nov 14;573(1-3):241-8. doi: 10.1016/j.ejphar.2007.07.013. Epub 2007 Jul 13.
5
NAD+ as a metabolic link between DNA damage and cell death.
J Neurosci Res. 2005;79(1-2):216-23. doi: 10.1002/jnr.20289.
8
NF-κB mediates radio-sensitization by the PARP-1 inhibitor, AG-014699.
Oncogene. 2012 Jan 12;31(2):251-64. doi: 10.1038/onc.2011.229. Epub 2011 Jun 27.
10
NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes.
Biochem Biophys Res Commun. 2003 Sep 5;308(4):809-13. doi: 10.1016/s0006-291x(03)01483-9.

引用本文的文献

2
The therapeutic potential of targeting regulated non-apoptotic cell death.
Nat Rev Drug Discov. 2023 Sep;22(9):723-742. doi: 10.1038/s41573-023-00749-8. Epub 2023 Aug 7.
3
Nicotinamide Adenine Dinucleotide (NAD)-Dependent Signaling in Neurological Disorders.
Antioxid Redox Signal. 2023 Dec;39(16-18):1150-1166. doi: 10.1089/ars.2023.0241. Epub 2023 Aug 18.
4
Mechanisms of Kaempferol in the treatment of diabetes: A comprehensive and latest review.
Front Endocrinol (Lausanne). 2022 Sep 7;13:990299. doi: 10.3389/fendo.2022.990299. eCollection 2022.
5
Therapeutic Properties of Ayahuasca Components in Ischemia/Reperfusion Injury of the Eye.
Biomedicines. 2022 Apr 26;10(5):997. doi: 10.3390/biomedicines10050997.
6
Nicotinamide adenine dinucleotide and the sirtuins caution: Pro-cancer functions.
Aging Med (Milton). 2021 Nov 30;4(4):337-344. doi: 10.1002/agm2.12184. eCollection 2021 Dec.
7
Emerging role of PARP-1 and PARthanatos in ischemic stroke.
J Neurochem. 2022 Jan;160(1):74-87. doi: 10.1111/jnc.15464. Epub 2021 Jul 28.
8
Targeting Parthanatos in Ischemic Stroke.
Front Neurol. 2021 May 5;12:662034. doi: 10.3389/fneur.2021.662034. eCollection 2021.
9
Kaempferol suppresses acetaminophen-induced liver damage by upregulation/activation of SIRT1.
Pharm Biol. 2021 Dec;59(1):146-156. doi: 10.1080/13880209.2021.1877734.

本文引用的文献

1
DNA damage-dependent NF-κB activation: NEMO turns nuclear signaling inside out.
Immunol Rev. 2012 Mar;246(1):311-26. doi: 10.1111/j.1600-065X.2012.01101.x.
2
Poly(ADP-ribose)polymerase-1 modulates microglial responses to amyloid β.
J Neuroinflammation. 2011 Nov 3;8:152. doi: 10.1186/1742-2094-8-152.
3
PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation.
Cell Metab. 2011 Apr 6;13(4):461-468. doi: 10.1016/j.cmet.2011.03.004.
4
Nuclear initiated NF-κB signaling: NEMO and ATM take center stage.
Cell Res. 2011 Jan;21(1):116-30. doi: 10.1038/cr.2010.179. Epub 2010 Dec 28.
5
SIRT2 regulates NF-κB dependent gene expression through deacetylation of p65 Lys310.
J Cell Sci. 2010 Dec 15;123(Pt 24):4251-8. doi: 10.1242/jcs.073783. Epub 2010 Nov 16.
7
The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets.
Mol Cell. 2010 Jul 9;39(1):8-24. doi: 10.1016/j.molcel.2010.06.017.
8
The roles of PARP1 in gene control and cell differentiation.
Curr Opin Genet Dev. 2010 Oct;20(5):512-8. doi: 10.1016/j.gde.2010.06.001. Epub 2010 Jun 28.
9
SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2.
Mol Cancer Ther. 2010 Apr;9(4):844-55. doi: 10.1158/1535-7163.MCT-09-0971. Epub 2010 Apr 6.
10
NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death.
J Neurosci. 2010 Feb 24;30(8):2967-78. doi: 10.1523/JNEUROSCI.5552-09.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验