Suppr超能文献

机械张力下单个卷曲螺旋蛋白的各向异性稳定性和折叠动力学。

Highly anisotropic stability and folding kinetics of a single coiled coil protein under mechanical tension.

机构信息

Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States.

出版信息

J Am Chem Soc. 2011 Aug 17;133(32):12749-57. doi: 10.1021/ja204005r. Epub 2011 Jul 22.

Abstract

Coiled coils are one of the most abundant protein structural motifs and widely mediate protein interactions and force transduction or sensation. They are thus model systems for protein engineering and folding studies, particularly the GCN4 coiled coil. Major single-molecule methods have also been applied to this protein and revealed its folding kinetics at various spatiotemporal scales. Nevertheless, the folding energy and the kinetics of a single GCN4 coiled coil domain have not been well determined at a single-molecule level. Here we used high-resolution optical tweezers to characterize the folding and unfolding reactions of a single GCN4 coiled coil domain and their dependence on the pulling direction. In one axial and two transverse pulling directions, we observed reversible, two-state transitions of the coiled coil in real time. The transitions equilibrate at pulling forces ranging from 6 to 12 pN, showing different stabilities of the coiled coil in regard to pulling direction. Furthermore, the transition rates vary with both the magnitude and the direction of the pulling force by greater than 1000 folds, indicating a highly anisotropic and topology-dependent energy landscape for protein transitions under mechanical tension. We developed a new analytical theory to extract energy and kinetics of the protein transition at zero force. The derived folding energy does not depend on the pulling direction and is consistent with the measurement in bulk, which further confirms the applicability of the single-molecule manipulation approach for energy measurement. The highly anisotropic thermodynamics of proteins under tension should play important roles in their biological functions.

摘要

螺旋线圈是最丰富的蛋白质结构基序之一,广泛介导蛋白质相互作用和力转导或感觉。因此,它们是蛋白质工程和折叠研究的模型系统,特别是 GCN4 螺旋线圈。主要的单分子方法也已应用于该蛋白,并揭示了其在各种时空尺度下的折叠动力学。然而,单个 GCN4 螺旋线圈结构域的折叠能和动力学尚未在单分子水平上得到很好的确定。在这里,我们使用高分辨率光镊来表征单个 GCN4 螺旋线圈结构域的折叠和展开反应及其对拉伸方向的依赖性。在一个轴向和两个横向拉伸方向上,我们实时观察到螺旋线圈的可逆、两态转变。在从 6 到 12 pN 的拉伸力范围内,这些转变达到平衡,显示出螺旋线圈在不同拉伸方向下的不同稳定性。此外,过渡速率随拉伸力的大小和方向变化超过 1000 倍,表明在机械张力下蛋白质转变具有高度各向异性和拓扑依赖性的能量景观。我们开发了一种新的分析理论来提取零力下蛋白质转变的能量和动力学。得出的折叠能不依赖于拉伸方向,与体相测量一致,进一步证实了单分子操纵方法在能量测量中的适用性。蛋白质在张力下的高度各向异性热力学应该在它们的生物学功能中发挥重要作用。

相似文献

1
Highly anisotropic stability and folding kinetics of a single coiled coil protein under mechanical tension.
J Am Chem Soc. 2011 Aug 17;133(32):12749-57. doi: 10.1021/ja204005r. Epub 2011 Jul 22.
4
Energetics of coiled coil folding: the nature of the transition states.
Biochemistry. 2001 Mar 27;40(12):3544-52. doi: 10.1021/bi002161l.
5
Truncation of a cross-linked GCN4-p1 coiled coil leads to ultrafast folding.
Biochemistry. 2006 Sep 12;45(36):10981-6. doi: 10.1021/bi0606142.
7
Molecular basis of coiled-coil formation.
Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7062-7. doi: 10.1073/pnas.0700321104. Epub 2007 Apr 16.
8
Full distance-resolved folding energy landscape of one single protein molecule.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2013-8. doi: 10.1073/pnas.0909854107. Epub 2010 Jan 19.
9
The native GCN4 leucine-zipper domain does not uniquely specify a dimeric oligomerization state.
Biochemistry. 2012 Nov 27;51(47):9581-91. doi: 10.1021/bi301132k. Epub 2012 Nov 13.
10
Viscosity dependence of the folding kinetics of a dimeric and monomeric coiled coil.
Biochemistry. 1999 Feb 23;38(8):2601-9. doi: 10.1021/bi982209j.

引用本文的文献

1
Why are so many fusogens rod-shaped?
bioRxiv. 2025 Jul 3:2025.06.30.662463. doi: 10.1101/2025.06.30.662463.
2
Genetically encoded mechano-sensors with versatile readouts and compact size.
bioRxiv. 2025 Jan 18:2025.01.16.633409. doi: 10.1101/2025.01.16.633409.
3
Digital and Tunable Genetically Encoded Tension Sensors Based on Engineered Coiled-Coils.
Angew Chem Int Ed Engl. 2025 Feb 17;64(8):e202407359. doi: 10.1002/anie.202407359. Epub 2025 Jan 28.
4
Coiled-coil domains are sufficient to drive liquid-liquid phase separation in protein models.
Biophys J. 2024 Mar 19;123(6):703-717. doi: 10.1016/j.bpj.2024.02.007. Epub 2024 Feb 15.
5
Unveiling Mechanical Activation: GAIN Domain Unfolding and Dissociation in Adhesion GPCRs.
Nano Lett. 2023 Oct 25;23(20):9179-9186. doi: 10.1021/acs.nanolett.3c01163. Epub 2023 Oct 13.
6
Force redistribution in clathrin-mediated endocytosis revealed by coiled-coil force sensors.
Sci Adv. 2023 Oct 13;9(41):eadi1535. doi: 10.1126/sciadv.adi1535.
7
8
Energetics, kinetics, and pathways of SNARE assembly in membrane fusion.
Crit Rev Biochem Mol Biol. 2022 Aug;57(4):443-460. doi: 10.1080/10409238.2022.2121804. Epub 2022 Sep 24.
9
Force Dependence of Proteins' Transition State Position and the Bell-Evans Model.
Nanomaterials (Basel). 2021 Nov 11;11(11):3023. doi: 10.3390/nano11113023.

本文引用的文献

1
The RSC chromatin remodelling ATPase translocates DNA with high force and small step size.
EMBO J. 2011 May 6;30(12):2364-72. doi: 10.1038/emboj.2011.141.
2
The evolution and structure prediction of coiled coils across all genomes.
J Mol Biol. 2010 Oct 29;403(3):480-93. doi: 10.1016/j.jmb.2010.08.032. Epub 2010 Sep 9.
3
A mechanically stabilized receptor-ligand flex-bond important in the vasculature.
Nature. 2010 Aug 19;466(7309):992-5. doi: 10.1038/nature09295.
4
Collapse dynamics of single proteins extended by force.
Biophys J. 2010 Jun 2;98(11):2692-701. doi: 10.1016/j.bpj.2010.02.053.
5
The folding cooperativity of a protein is controlled by its chain topology.
Nature. 2010 Jun 3;465(7298):637-40. doi: 10.1038/nature09021. Epub 2010 May 23.
6
Analysis of single molecule folding studies with replica correlation functions.
Chem Phys Lett. 2009 Mar 26;471(4-6):310-314. doi: 10.1016/j.cplett.2009.02.054.
7
Full distance-resolved folding energy landscape of one single protein molecule.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2013-8. doi: 10.1073/pnas.0909854107. Epub 2010 Jan 19.
9
Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor.
Science. 2009 Jun 5;324(5932):1330-4. doi: 10.1126/science.1170905.
10
Design of protein-interaction specificity gives selective bZIP-binding peptides.
Nature. 2009 Apr 16;458(7240):859-64. doi: 10.1038/nature07885.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验