Suppr超能文献

蛋白质的折叠协同性受其链拓扑结构的控制。

The folding cooperativity of a protein is controlled by its chain topology.

机构信息

Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, USA.

出版信息

Nature. 2010 Jun 3;465(7298):637-40. doi: 10.1038/nature09021. Epub 2010 May 23.

Abstract

The three-dimensional structures of proteins often show a modular architecture comprised of discrete structural regions or domains. Cooperative communication between these regions is important for catalysis, regulation and efficient folding; lack of coupling has been implicated in the formation of fibrils and other misfolding pathologies. How different structural regions of a protein communicate and contribute to a protein's overall energetics and folding, however, is still poorly understood. Here we use a single-molecule optical tweezers approach to induce the selective unfolding of particular regions of T4 lysozyme and monitor the effect on other regions not directly acted on by force. We investigate how the topological organization of a protein (the order of structural elements along the sequence) affects the coupling and folding cooperativity between its domains. To probe the status of the regions not directly subjected to force, we determine the free energy changes during mechanical unfolding using Crooks' fluctuation theorem. We pull on topological variants (circular permutants) and find that the topological organization of the polypeptide chain critically determines the folding cooperativity between domains and thus what parts of the folding/unfolding landscape are explored. We speculate that proteins may have evolved to select certain topologies that increase coupling between regions to avoid areas of the landscape that lead to kinetic trapping and misfolding.

摘要

蛋白质的三维结构通常呈现出由离散结构区域或结构域组成的模块化结构。这些区域之间的协同通讯对于催化、调节和有效折叠至关重要;缺乏偶联已被牵连到纤维的形成和其他错误折叠的病理学中。然而,不同的蛋白质结构区域如何进行通讯以及如何影响蛋白质的整体能量和折叠仍然知之甚少。在这里,我们使用单分子光学镊子方法诱导 T4 溶菌酶的特定区域选择性展开,并监测对力未直接作用的其他区域的影响。我们研究了蛋白质的拓扑组织(序列中结构元素的顺序)如何影响其结构域之间的偶联和折叠协同性。为了探测未直接受力的区域的状态,我们使用克鲁克斯涨落定理确定机械展开过程中自由能的变化。我们对拓扑变体(环状变构体)进行了研究,发现多肽链的拓扑组织对结构域之间的折叠协同性起着至关重要的作用,从而决定了折叠/展开景观中哪些部分被探索。我们推测,蛋白质可能已经进化到选择某些拓扑结构,以增加区域之间的偶联,从而避免导致动力学捕获和错误折叠的景观区域。

相似文献

1
The folding cooperativity of a protein is controlled by its chain topology.
Nature. 2010 Jun 3;465(7298):637-40. doi: 10.1038/nature09021. Epub 2010 May 23.
2
Modulation of a protein free-energy landscape by circular permutation.
J Phys Chem B. 2013 Nov 7;117(44):13743-7. doi: 10.1021/jp406818t. Epub 2013 Oct 23.
4
Thermodynamic effects of mutations on the denaturation of T4 lysozyme.
Biophys J. 1996 Oct;71(4):1994-2001. doi: 10.1016/S0006-3495(96)79397-9.
5
The ribosome modulates nascent protein folding.
Science. 2011 Dec 23;334(6063):1723-7. doi: 10.1126/science.1209740.
6
The energetics of T4 lysozyme reveal a hierarchy of conformations.
Nat Struct Biol. 1999 Nov;6(11):1072-8. doi: 10.1038/14956.
7
The energy cost of polypeptide knot formation and its folding consequences.
Nat Commun. 2017 Nov 17;8(1):1581. doi: 10.1038/s41467-017-01691-1.
8
Atomic force microscopy reveals parallel mechanical unfolding pathways of T4 lysozyme: evidence for a kinetic partitioning mechanism.
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):1885-90. doi: 10.1073/pnas.0706775105. Epub 2008 Feb 6.

引用本文的文献

1
Mechanical effect of protein glycosylation on BiP-mediated post-translational translocation and folding in the endoplasmic reticulum.
Biophys Rev. 2025 Apr 7;17(2):435-447. doi: 10.1007/s12551-025-01313-x. eCollection 2025 Apr.
2
On the free energy of protein folding in optical tweezers experiments.
Biophys Rev. 2025 Apr 22;17(2):231-245. doi: 10.1007/s12551-025-01310-0. eCollection 2025 Apr.
3
A human gut bacterium antagonizes neighboring bacteria by altering their protein-folding ability.
Cell Host Microbe. 2025 Feb 12;33(2):200-217.e24. doi: 10.1016/j.chom.2025.01.008. Epub 2025 Feb 4.
5
Mechanistic Insight into the Mechanical Unfolding of the Integral Membrane Diacylglycerol Kinase.
JACS Au. 2024 Mar 16;4(4):1422-1435. doi: 10.1021/jacsau.3c00829. eCollection 2024 Apr 22.
6
Folding pathway of a discontinuous two-domain protein.
Nat Commun. 2024 Jan 23;15(1):690. doi: 10.1038/s41467-024-44901-3.
7
The role of single protein elasticity in mechanobiology.
Nat Rev Mater. 2023 Jan;8:10-24. doi: 10.1038/s41578-022-00488-z. Epub 2022 Oct 24.
8
Protein folding mechanism revealed by single-molecule force spectroscopy experiments.
Biophys Rep. 2021 Oct 31;7(5):399-412. doi: 10.52601/bpr.2021.210024.

本文引用的文献

1
CPDB: a database of circular permutation in proteins.
Nucleic Acids Res. 2009 Jan;37(Database issue):D328-32. doi: 10.1093/nar/gkn679. Epub 2008 Oct 8.
2
Single-molecule studies of protein folding.
Annu Rev Biochem. 2008;77:101-25. doi: 10.1146/annurev.biochem.77.060706.093102.
3
Atomic force microscopy reveals parallel mechanical unfolding pathways of T4 lysozyme: evidence for a kinetic partitioning mechanism.
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):1885-90. doi: 10.1073/pnas.0706775105. Epub 2008 Feb 6.
4
Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers.
Eur Biophys J. 2008 Jul;37(6):729-38. doi: 10.1007/s00249-007-0247-y. Epub 2008 Jan 9.
5
Single-molecule dynamics of mechanical coiled-coil unzipping.
Langmuir. 2008 Feb 19;24(4):1338-42. doi: 10.1021/la7023567. Epub 2007 Nov 1.
7
Single molecule studies of protein folding using atomic force microscopy.
Methods Mol Biol. 2007;350:139-67. doi: 10.1385/1-59745-189-4:139.
8
Protein misfolding, functional amyloid, and human disease.
Annu Rev Biochem. 2006;75:333-66. doi: 10.1146/annurev.biochem.75.101304.123901.
9
Protein structure by mechanical triangulation.
Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1244-7. doi: 10.1073/pnas.0509217103. Epub 2006 Jan 23.
10
Direct observation of the three-state folding of a single protein molecule.
Science. 2005 Sep 23;309(5743):2057-60. doi: 10.1126/science.1116702.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验