Liu Shuhong, Liu Jinchan, Foote Alexander, Ogasawara Hiroaki, Al Abdullatif Sarah, Batista Victor S, Salaita Khalid
Department of Chemistry, Emory University, Atlanta, Georgia, 30322, United States.
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520, United States.
Angew Chem Int Ed Engl. 2025 Feb 17;64(8):e202407359. doi: 10.1002/anie.202407359. Epub 2025 Jan 28.
Genetically encoded tension sensors (GETSs) allow for quantifying forces experienced by intracellular proteins involved in mechanotransduction. The vast majority of GETSs are comprised of a FRET pair flanking an elastic "spring-like" domain that gradually extends in response to force. Because of ensemble averaging, the FRET signal generated by such analog sensors conceals forces that deviate from the average, and hence it is unknown if a subset of proteins experience greater magnitudes of force. We address this problem by developing digital GETSs comprised of coiled-coils (CCs) with tunable mechanical thresholds. We validate the mechanical response of CC digital probes using thermodynamic stability prediction, AlphaFold2 modeling, steered molecular dynamics simulations, and single-molecule force spectroscopy. Live cell measurements using optimized CC tension sensors that are inserted into vinculin demonstrate that 13 % of this mechanosensor experiences forces >9.9 pN within focal adhesions. This reveals greater magnitudes of vinculin force than had previously been reported and demonstrates that CC tension sensors enable more facile and precise tension measurements in living systems.
基因编码张力传感器(GETSs)能够对参与机械转导的细胞内蛋白质所承受的力进行量化。绝大多数GETSs由一对荧光共振能量转移(FRET)对组成,这对FRET对位于一个弹性的“弹簧状”结构域两侧,该结构域会因受力而逐渐伸展。由于总体平均效应,此类模拟传感器产生的FRET信号会掩盖偏离平均值的力,因此尚不清楚是否有一部分蛋白质承受着更大的力。我们通过开发由具有可调机械阈值的卷曲螺旋(CCs)组成的数字GETSs来解决这个问题。我们使用热力学稳定性预测、AlphaFold2建模、引导分子动力学模拟和单分子力谱来验证CC数字探针的机械响应。使用插入纽蛋白的优化CC张力传感器进行活细胞测量表明,在粘着斑内,13%的这种机械传感器承受的力大于9.9皮牛。这揭示了纽蛋白承受的力比之前报道的更大,并表明CC张力传感器能够在活体系统中更轻松、精确地进行张力测量。