Suppr超能文献

Thermodynamic and kinetic destabilization of triosephosphate isomerase resulting from the mutation of conserved and non-conserved cysteines.

作者信息

Cruces-Ángeles Ma Eugenia, Cabrera Nallely, Pérez-Montfort Ruy, Reyes-López César A, Hernández-Arana Andrés

机构信息

Área de Biofisicoquímica, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa.Apartado Postal 55-534, Iztapalapa, D.F. 09340, México.

出版信息

Protein Pept Lett. 2011 Dec;18(12):1290-8. doi: 10.2174/092986611797642715.

Abstract

Several variants of Saccharomyces cerevisiae triosephosphate isomerase (yTIM) were studied to determine how mutations of conserved and non-conserved Cys residues affect the enzyme. Wild-type yTIM has two buried free cysteines: Cys 41 (non-conserved) and the invariant Cys 126. Single-site mutants, containing substitutions of these cysteines with Ala, Val, or Ser (the three most conservative changes for a buried Cys, according to substitution matrices), were examined for stability and enzymatic activity. Neither of the Cys residues was found to be essential for enzyme catalysis. Determination of the global stability of the mutants indicated that, regardless of which Cys was substituted, individual Cys→Ala and Cys→Val mutations, as well as the C41S substitution, all decrease the unfolding free energy of the dimeric protein by less than 23 kJ mol(-1) (at 37 °C, pH 7.4), as compared to the wild-type enzyme. In contrast, a substantially larger destabilization (37 kJ mol(-1)) was found in the C126S mutant. These results suggest that, with the exception of C126S, all of these mutations can be regarded as neutral (i.e., mutations that do not impair the reproductive success of the organism). Accordingly, Cys 126 has remained invariant across evolution because its neutral substitutions by Ala or Val would require a highly unlikely, concerted double mutation at any of the Cys codons. Furthermore, detrimental effects to a cell expressing the C126S TIM mutant more likely arise from the high unfolding rate of this enzyme.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验