Hernández-Santoyo Alejandra, Domínguez-Ramírez Lenin, Reyes-López César A, González-Mondragón Edith, Hernández-Arana Andrés, Rodríguez-Romero Adela
Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU México D.F. 04510, Mexico.
División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Lerma, Lerma de Villada 07360, Mexico.
Int J Mol Sci. 2012;13(8):10010-10021. doi: 10.3390/ijms130810010. Epub 2012 Aug 10.
All the members of the triosephosphate isomerase (TIM) family possess a cystein residue (Cys126) located near the catalytically essential Glu165. The evolutionarily conserved Cys126, however, does not seem to play a significant role in the catalytic activity. On the other hand, substitution of this residue by other amino acid residues destabilizes the dimeric enzyme, especially when Cys is replaced by Ser. In trying to assess the origin of this destabilization we have determined the crystal structure of Saccharomyces cerevisiae TIM (ScTIM) at 1.86 Å resolution in the presence of PGA, which is only bound to one subunit. Comparisons of the wild type and mutant structures reveal that a change in the orientation of the Ser hydroxyl group, with respect to the Cys sulfhydryl group, leads to penetration of water molecules and apparent destabilization of residues 132-138. The latter results were confirmed by means of Molecular Dynamics, which showed that this region, in the mutated enzyme, collapses at about 70 ns.
磷酸丙糖异构酶(TIM)家族的所有成员都有一个位于催化必需的Glu165附近的半胱氨酸残基(Cys126)。然而,进化上保守的Cys126似乎在催化活性中不起重要作用。另一方面,用其他氨基酸残基取代该残基会使二聚体酶不稳定,尤其是当Cys被Ser取代时。在试图评估这种不稳定的起源时,我们测定了在存在仅与一个亚基结合的PGA的情况下,酿酒酵母TIM(ScTIM)在1.86 Å分辨率下的晶体结构。野生型和突变体结构的比较表明,Ser羟基相对于Cys巯基的方向变化导致水分子的渗透以及132 - 138位残基明显不稳定。后者的结果通过分子动力学得到证实,该动力学表明在突变酶中,该区域在约70 ns时塌陷。