Seleem Hussein S
Ain Shams University, Faculty of Education, Department of Chemistry, Roxy, Cairo, Egypt.
Chem Cent J. 2011 Jun 27;5:35. doi: 10.1186/1752-153X-5-35.
The importance of the isatinic quinolyl hydrazones arises from incorporating the quinoline ring with the indole ring in the same compound. Quinoline ring has therapeutic and biological activities. On the other hand, isatin (1H-indole-2,3-dione) and its derivatives exhibit a wide range of biological activities. Also, the indole ring occurs in Jasmine flowers and Orange blossoms. Recently, the physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions. In this context, we have reported to isolate, characterize and study the biological activity of some transition metal complexes of an isatinic quinolyl hydrazone; 3-[2-(4-methyl quinolin-2-yl)hydrazono] indolin-2-one.
Mono- and binuclear as well as dimeric chelates were obtained from the reaction of a new isatinic quinolyl hydrazone with Fe(III), Co(II), Ni(II), Cu(II), VO(II) and Pd(II) ions. The ligand showed a variety of modes of bonding viz. (NNO)2-, (NO)- and (NO) per each metal ion supporting its ambidentate and flexidentate characters. The mode of bonding and basicity of the ligand depend mainly on the type of the metal cation and its counter anion. All the obtained Pd(II)- complexes have the preferable square planar geometry (D4h- symmetry) and depend mainly on the mole ratio (M:L).
The effect of the type of the metal ion for the same anion (Cl-) is obvious from either structural diversity of the isolated complexes (Oh, Td and D4h) or the various modes of bonding. The isatinic hydrazone uses its lactim form in all complexes (Cl-) except complex 5 (SO42-) in which it uses its lactam form. The obtained Pd(II)- complexes (dimeric, mono- and binuclear) are affected by the mole ratio (M:L) and have the square planar (D4h) geometry. Also, the antimicrobial activity is highly influenced by the nature of the metal ion and the order for S. aureus bacteria is as follows: Nickel(II) > Vanadyl(II) > Cobalt(II) > Copper(II) ≈ Palladium(II) >> Iron(III).
异吲哚啉基喹啉腙的重要性源于在同一化合物中引入了喹啉环和吲哚环。喹啉环具有治疗和生物活性。另一方面,异吲哚酮(1H-吲哚-2,3-二酮)及其衍生物表现出广泛的生物活性。此外,吲哚环存在于茉莉花和橙花中。最近,喹啉腙的生理和生物活性源于它们与过渡金属离子形成金属螯合物的倾向。在此背景下,我们报道了分离、表征和研究一种异吲哚啉基喹啉腙;3-[2-(4-甲基喹啉-2-基)腙基]吲哚啉-2-酮的一些过渡金属配合物的生物活性。
由一种新的异吲哚啉基喹啉腙与Fe(III)、Co(II)、Ni(II)、Cu(II)、VO(II)和Pd(II)离子反应得到单核、双核以及二聚螯合物。该配体表现出多种键合模式,即每个金属离子的(NNO)2-、(NO)-和(NO),支持其双齿和多齿特性。配体的键合模式和碱性主要取决于金属阳离子及其抗衡阴离子的类型。所有得到的Pd(II)配合物都具有优选的平面正方形几何结构(D4h对称性),并且主要取决于摩尔比(M:L)。
对于相同的阴离子(Cl-),金属离子类型的影响从分离出的配合物的结构多样性(Oh、Td和D4h)或各种键合模式中显而易见。除了配合物5(SO42-)使用其内酰胺形式外,异吲哚啉腙在所有配合物(Cl-)中都使用其内酰亚胺形式。得到的Pd(II)配合物(二聚体、单核和双核)受摩尔比(M:L)影响,具有平面正方形(D4h)几何结构。此外,抗菌活性受金属离子性质的高度影响,对金黄色葡萄球菌的抗菌活性顺序如下:镍(II) > 氧钒(II) > 钴(II) > 铜(II) ≈ 钯(II) >> 铁(III)。