Suppr超能文献

基于变分贝叶斯算法的动态图像序列响应函数估计

Estimation of Response Functions Based on Variational Bayes Algorithm in Dynamic Images Sequences.

作者信息

Shan Bowei

机构信息

School of Information Engineering, Chang'an University, Shaanxi 710064, China.

出版信息

Biomed Res Int. 2016;2016:4851401. doi: 10.1155/2016/4851401. Epub 2016 Aug 18.

Abstract

We proposed a nonparametric Bayesian model based on variational Bayes algorithm to estimate the response functions in dynamic medical imaging. In dynamic renal scintigraphy, the impulse response or retention functions are rather complicated and finding a suitable parametric form is problematic. In this paper, we estimated the response functions using nonparametric Bayesian priors. These priors were designed to favor desirable properties of the functions, such as sparsity or smoothness. These assumptions were used within hierarchical priors of the variational Bayes algorithm. We performed our algorithm on the real online dataset of dynamic renal scintigraphy. The results demonstrated that this algorithm improved the estimation of response functions with nonparametric priors.

摘要

我们提出了一种基于变分贝叶斯算法的非参数贝叶斯模型,用于估计动态医学成像中的响应函数。在动态肾闪烁显像中,脉冲响应或滞留函数相当复杂,找到合适的参数形式存在问题。在本文中,我们使用非参数贝叶斯先验估计响应函数。这些先验被设计为有利于函数的理想特性,如稀疏性或平滑性。这些假设在变分贝叶斯算法的分层先验中使用。我们在动态肾闪烁显像的真实在线数据集上执行了我们的算法。结果表明,该算法利用非参数先验改进了响应函数的估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d18/5008037/5f7a7b9bdf92/BMRI2016-4851401.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验