Hopkins Marine Station, Stanford University, Pacific Grove, California 93950-3094.
Integr Comp Biol. 2002 Aug;42(4):780-9. doi: 10.1093/icb/42.4.780.
Temperature's pervasive effects on physiological systems are reflected in the suite of temperature-adaptive differences observed among species from different thermal niches, such as species with different vertical distributions (zonations) along the subtidal to intertidal gradient. Among the physiological traits that exhibit adaptive variation related to vertical zonation are whole organism thermal tolerance, heart function, mitochondrial respiration, membrane static order (fluidity), action potential generation, protein synthesis, heat-shock protein expression, and protein thermal stability. For some, but not all, of these thermally sensitive traits acclimatization leads to adaptive shifts in thermal optima and limits. The costs associated with repairing thermal damage and adapting systems through acclimatization may contribute importantly to energy budgets. These costs arise from such sources as: (i) activation and operation of the heat-shock response, (ii) replacement of denatured proteins that have been removed through proteolysis, (iii) restructuring of cellular membranes ("homeoviscous" adaptation), and (iv) pervasive shifts in gene expression (as gauged by using DNA microarray techniques). The vertical zonation observed in rocky intertidal habitats thus may reflect two distinct yet closely related aspects of thermal physiology: (i) intrinsic interspecific differences in temperature sensitivities of physiological systems, which establish thermal optima and tolerance limits for species; and (ii) 'cost of living' considerations arising from sub-lethal perturbation of these physiological systems, which may establish an energetics-based limitation to the maximal height at which a species can occur. Quantifying the energetic costs arising from heat stress represents an important challenge for future investigations.
温度对生理系统的普遍影响反映在不同热生境物种之间观察到的一系列温度适应差异中,例如具有不同垂直分布(沿潮间带到潮下带梯度的分区)的物种。在表现出与垂直分区相关的适应性变化的生理特征中,包括整个生物体的热耐受性、心脏功能、线粒体呼吸、膜静态有序性(流动性)、动作电位产生、蛋白质合成、热休克蛋白表达和蛋白质热稳定性。对于其中一些但不是所有对温度敏感的特征,适应会导致热最佳值和限制的适应性变化。通过适应修复热损伤和调整系统所涉及的成本可能对能量预算有重要贡献。这些成本来自以下来源:(i)热休克反应的激活和运作,(ii)通过蛋白水解去除的变性蛋白的替换,(iii)细胞膜的重构(“同源适应”),以及(iv)基因表达的普遍变化(通过使用 DNA 微阵列技术来衡量)。因此,在岩石潮间带生境中观察到的垂直分区可能反映了热生理学的两个截然不同但密切相关的方面:(i)生理系统对温度敏感性的种间固有差异,这些差异为物种建立了热最佳值和耐受性限制;以及(ii)这些生理系统的亚致死干扰所产生的“生活成本”考虑因素,这可能为物种能够出现的最大高度建立了基于能量的限制。量化来自热应激的能量成本是未来研究的重要挑战。