Department of Physiology and Pharmacology, and the Hotchkiss Brain Institute, Canada.
Mol Pharmacol. 2011 Oct;80(4):573-84. doi: 10.1124/mol.111.073460. Epub 2011 Jun 27.
Voltage-gated sodium channels are important in initiating and propagating nerve impulses in various tissues, including cardiac muscle, skeletal muscle, the brain, and the peripheral nerves. Hyperexcitability of these channels leads to such disorders as cardiac arrhythmias (Na(v)1.5), myotonias (Na(v)1.4), epilepsies (Na(v)1.2), and pain (Na(v)1.7). Thus, there is strong motivation to identify isoform-specific blockers and the molecular determinants underlying their selectivity among these channels. μ-Conotoxin KIIIA blocks rNa(v)1.2 (IC(50), 5 nM), rNa(v)1.4 (37 nM), and hNa(v)1.7 (97 nM), expressed in mammalian cells, with high affinity and a maximal block at saturating concentrations of 90 to 95%. Mutations of charged residues on both the toxin and channel modulate the maximal block and/or affinity of KIIIA. Two toxin substitutions, K7A and R10A, modulate the maximal block (52-70%). KIIIA-H12A and R14A were the only derivatives tested that altered Na(v) isoform specificity. KIIIA-R14A showed the highest affinity for Na(v)1.7, a channel involved in pain signaling. Wild-type KIIIA has a 2-fold higher affinity for Na(v)1.4 than for Na(v)1.7, which can be attributed to a missing outer vestibule charge in domain III of Na(v)1.7. Reciprocal mutations Na(v)1.4 D1241I and Na(v)1.7 I1410D remove the affinity differences between these two channels for wild-type KIIIA without affecting their affinities for KIIIA-R14A. KIIIA is the first μ-conotoxin to show enhanced activity as pH is lowered, apparently resulting from titration of the free N terminus. Removal of this free amino group reduced the pH sensitivity by 10-fold. Recognition of these molecular determinants of KIIIA block may facilitate further development of subtype-specific, sodium channel blockers to treat hyperexcitability disorders.
电压门控钠离子通道在各种组织中启动和传播神经冲动(包括心肌、骨骼肌、大脑和周围神经)中起着重要作用。这些通道的过度兴奋导致心律失常(Na(v)1.5)、肌强直(Na(v)1.4)、癫痫(Na(v)1.2)和疼痛(Na(v)1.7)等疾病。因此,人们强烈希望确定具有亚型特异性的阻断剂,以及这些通道中选择性的分子决定因素。μ-Conotoxin KIIIA 以高亲和力(IC(50)为 5 nM)阻断 rNa(v)1.2、rNa(v)1.4 和 hNa(v)1.7,这些通道在哺乳动物细胞中表达,最大阻断作用在饱和浓度下达到 90%至 95%。毒素和通道上带电荷残基的突变调节 KIIIA 的最大阻断作用和/或亲和力。两种毒素取代,K7A 和 R10A,调节最大阻断作用(52-70%)。在测试的衍生物中,只有 KIIIA-H12A 和 R14A 改变了 Na(v)亚型的特异性。KIIIA-R14A 对参与疼痛信号传递的 Na(v)1.7 具有最高的亲和力。野生型 KIIIA 对 Na(v)1.4 的亲和力比对 Na(v)1.7 高 2 倍,这可以归因于 Na(v)1.7 第三结构域缺少外部前庭电荷。Na(v)1.4 D1241I 和 Na(v)1.7 I1410D 的相互突变消除了这两个通道对野生型 KIIIA 的亲和力差异,而不影响它们对 KIIIA-R14A 的亲和力。KIIIA 是第一个显示随着 pH 值降低而增强活性的 μ-conotoxin,这显然是由于游离 N 端的滴定作用。除去这个游离的氨基基团使 pH 敏感性降低了 10 倍。对 KIIIA 阻断的这些分子决定因素的识别可能会促进进一步开发治疗过度兴奋疾病的亚型特异性钠离子通道阻断剂。