Mason Shelley S, Kohles Sean S, Zelick Randy D, Winn Shelley R, Saha Asit K
J Nanotechnol Eng Med. 2011 May 1;2(2):25001-25007. doi: 10.1115/1.4003878.
There has been considerable progress in cellular and molecular engineering due to recent advances in multiscale technology. Such technologies allow controlled manipulation of physiochemical interactions among cells in tissue culture. In particular, a novel chemomechanical bioreactor has recently been designed for the study of bone and cartilage tissue development, with particular focus on extracellular matrix formation. The bioreactor is equally significant as a tool for validation of mathematical models that explore biokinetic regulatory thresholds (Saha, A. K., and Kohles, S. S., 2010, "A Distinct Catabolic to Anabolic Threshold Due to Single-Cell Nanomechanical Stimulation in a Cartilage Biokinetics Model," J. Nanotechnol. Eng. Med., 1(3), p. 031005; 2010, "Periodic Nanomechanical Stimulation in a Biokinetics Model Identifying Anabolic and Catabolic Pathways Associated With Cartilage Matrix Homeostasis," J. Nanotechnol. Eng. Med., 1(4), p. 041001). In the current study, three-dimensional culture protocols are described for maintaining the cellular and biomolecular constituents within defined parameters. Preliminary validation of the bioreactor's form and function, expected bioassays of the resulting matrix components, and application to biokinetic models are described. This approach provides a framework for future detailed explorations combining multiscale experimental and mathematical analyses, at nanoscale sensitivity, to describe cell and biomolecule dynamics in different environmental regimes.
由于多尺度技术的最新进展,细胞和分子工程取得了显著进展。此类技术能够在组织培养中对细胞间的物理化学相互作用进行可控操作。特别是,最近设计了一种新型化学机械生物反应器,用于研究骨和软骨组织的发育,尤其关注细胞外基质的形成。该生物反应器作为一种工具,对于验证探索生物动力学调节阈值的数学模型同样具有重要意义(萨哈,A. K.,和科尔斯,S. S.,2010年,“软骨生物动力学模型中单细胞纳米机械刺激导致的明显分解代谢到合成代谢阈值”,《纳米技术工程与医学杂志》,第1卷第3期,第031005页;2010年,“生物动力学模型中的周期性纳米机械刺激识别与软骨基质稳态相关的合成代谢和分解代谢途径”,《纳米技术工程与医学杂志》,第1卷第4期,第041001页)。在当前研究中,描述了三维培养方案,以将细胞和生物分子成分维持在确定的参数范围内。介绍了生物反应器形式和功能的初步验证、所得基质成分的预期生物测定以及在生物动力学模型中的应用。这种方法为未来结合多尺度实验和数学分析进行详细探索提供了一个框架,以纳米级灵敏度描述不同环境条件下的细胞和生物分子动态。