Saha Asit K, Liang Yu, Kohles Sean S
Center for Allaying Health Disparities through Research and Education (CADRE), Department of Mathematics & Computer Science, Central State University, Wilberforce, OH 45384.
J Nanotechnol Eng Med. 2011 May 1;2(2):21004-21012. doi: 10.1115/1.4003876.
Multiscale technology and advanced mathematical models have been developed to control and characterize physicochemical interactions, respectively, enhancing cellular and molecular engineering progress. Ongoing tissue engineering development studies have provided experimental input for biokinetic models examining the influence of static or dynamic mechanical stimuli (Saha, A. K., and Kohles, S. S., 2010, "A Distinct Catabolic to Anabolic Threshold Due to Single-Cell Nanomechanical Stimulation in a Cartilage Biokinetics Model," J. Nanotechnol. Eng. Med., 1(3) p. 031005; 2010, "Periodic Nanomechanical Stimulation in a Biokinetics Model Identifying Anabolic and Catabolic Pathways Associated With Cartilage Matrix Homeostasis," J. Nanotechnol. Eng. Med., 1(4), p. 041001). In the current study, molecular regulatory thresholds associated with specific disease disparities are further examined through applications of stochastic mechanical stimuli. The results indicate that chondrocyte bioregulation initiates the catabolic pathway as a secondary response to control anabolic processes. In addition, high magnitude loading produced as a result of stochastic input creates a destabilized balance in homeostasis. This latter modeled result may be reflective of an injurious state or disease progression. These mathematical constructs provide a framework for single-cell mechanotransduction and may characterize transitions between healthy and disease states.
多尺度技术和先进的数学模型已分别用于控制和表征物理化学相互作用,促进了细胞和分子工程的进展。正在进行的组织工程开发研究为生物动力学模型提供了实验数据,该模型研究静态或动态机械刺激的影响(萨哈,A.K.,和科尔斯,S.S.,2010年,“软骨生物动力学模型中单细胞纳米机械刺激导致的分解代谢与合成代谢阈值差异”,《纳米技术工程与医学杂志》,第1卷第3期,第031005页;2010年,“生物动力学模型中的周期性纳米机械刺激确定与软骨基质稳态相关的合成代谢和分解代谢途径”,《纳米技术工程与医学杂志》,第1卷第4期,第041001页)。在当前研究中,通过应用随机机械刺激进一步研究与特定疾病差异相关的分子调节阈值。结果表明,软骨细胞生物调节作为控制合成代谢过程的次级反应启动分解代谢途径。此外,随机输入产生的高强度负荷会破坏体内平衡的稳定平衡。后一种模拟结果可能反映了损伤状态或疾病进展。这些数学结构为单细胞机械转导提供了一个框架,并可能表征健康状态和疾病状态之间的转变。