Saha Asit K, Kohles Sean S
Department of Mathematics and Computer Science and Center for Allaying Health Disparities Through Research and Education (CADRE), Central State University, Wilberforce, OH 45384.
J Nanotechnol Eng Med. 2010 Nov 1;1(4). doi: 10.1115/1.4002461.
Enhancing the available nanotechnology to describe physicochemical interactions during biokinetic regulation will strongly support cellular and molecular engineering efforts. In a recent mathematical model developed to extend the applicability of a statically loaded, single-cell biomechanical analysis, a biokinetic regulatory threshold was presented (Saha and Kohles, 2010, "A Distinct Catabolic to Anabolic Threshold Due to Single-Cell Static Nanomechanical Stimulation in a Cartilage Biokinetics Model," J. Nanotechnol. Eng. Med., 1(3), p. 031005). Results described multiscale mechanobiology in terms of catabolic to anabolic pathways. In the present study, we expand the mathematical model to continue exploring the nanoscale biomolecular response within a controlled microenvironment. Here, we introduce a dynamic mechanical stimulus for regulating cartilage molecule synthesis. Model iterations indicate the identification of a biomathematical mechanism balancing the harmony between catabolic and anabolic states. Relative load limits were defined to distinguish between "healthy" and "injurious" biomolecule accumulations. The presented mathematical framework provides a specific algorithm from which to explore biokinetic regulation.
增强现有的纳米技术以描述生物动力学调节过程中的物理化学相互作用,将有力地支持细胞和分子工程方面的工作。在最近开发的一个数学模型中,为了扩展静态加载的单细胞生物力学分析的适用性,提出了一个生物动力学调节阈值(萨哈和科尔斯,2010年,《软骨生物动力学模型中由于单细胞静态纳米机械刺激导致的分解代谢到合成代谢的明显阈值》,《纳米技术工程与医学杂志》,第1卷第3期,第031005页)。研究结果从分解代谢到合成代谢途径的角度描述了多尺度机械生物学。在本研究中,我们扩展了该数学模型,以继续探索在可控微环境中的纳米级生物分子反应。在这里,我们引入了一种动态机械刺激来调节软骨分子合成。模型迭代表明确定了一种生物数学机制,以平衡分解代谢和合成代谢状态之间的平衡。定义了相对负荷极限,以区分“健康”和“有害”的生物分子积累。所提出的数学框架提供了一种探索生物动力学调节的特定算法。