Fukui Institute for Fundamental Chemistry, Kyoto University, Nishihiraki-cho 34-4, Takano, Kyoto 606-8103, Japan.
J Phys Chem A. 2011 Aug 4;115(30):8520-7. doi: 10.1021/jp202829w. Epub 2011 Jul 13.
The molecular structure and the binding energy of Pt(PR(3))(2)(AlCl(3)) (R = H, Me, Ph, or Cy) were investigated by DFT, MP2 to MP4(SDTQ), and CCSD(T) methods. The optimized structure of Pt(PCy(3))(2)(AlCl(3)) (Cy = cyclohexyl) by the DFT method with M06-2X and LC-BLYP functionals agrees well with the experimental one. The MP4(SDTQ) and CCSD(T) methods present similar binding energies (BE) of Pt(PH(3))(2)(AlCl(3)), indicating that these methods provide reliable BE value. The DFT(M06-2X)-calculated BE value is close to the MP4(SDTQ) and CCSD(T)-calculated values, while the other functionals present BE values considerably different from the MP4(SDTQ) and CCSD(T)-calculated values. All computational methods employed here indicate that the BE values of Pt(PMe(3))(2)(AlCl(3)) and Pt(PPh(3))(2)(AlCl(3)) are considerably larger than those of the ethylene analogues. The coordinate bond of AlCl(3) with Pt(PR(3))(2) is characterized to be the σ charge transfer (CT) from Pt to AlCl(3). This complex has a T-shaped structure unlike the well-known Y-shaped structure of Pt(PMe(3))(2)(C(2)H(4)), although both are three-coordinate Pt(0) complex. This T-shaped structure results from important participation of the Pt d(σ) orbital in the σ-CT; because the Pt d(σ) orbital energy becomes lower as the P-Pt-P angle decreases, the T-shaped structure is more favorable for the σ-CT than is the Y-shaped structure. Co(alcn)(2)(AlCl(3)) (alcn = acetylacetoneiminate) is theoretically predicted here as a good candidate for the metal complex, which has an unsupported M-Al bond because its binding energy is calculated to be much larger than that of Pt(PCy(3))(2)(AlCl(3)).
采用 DFT、MP2 至 MP4(SDTQ) 和 CCSD(T) 方法研究了 Pt(PR(3))(2)(AlCl(3))(R = H、Me、Ph 或 Cy)的分子结构和结合能。通过 DFT 方法使用 M06-2X 和 LC-BLYP 函数优化的 Pt(PCy(3))(2)(AlCl(3))(Cy = 环己基)结构与实验结果吻合良好。MP4(SDTQ)和 CCSD(T)方法给出了相似的 Pt(PH(3))(2)(AlCl(3))的结合能(BE),表明这些方法提供了可靠的 BE 值。DFT(M06-2X)计算的 BE 值接近 MP4(SDTQ)和 CCSD(T)计算的值,而其他函数则给出了与 MP4(SDTQ)和 CCSD(T)计算值明显不同的 BE 值。这里使用的所有计算方法都表明,Pt(PMe(3))(2)(AlCl(3))和 Pt(PPh(3))(2)(AlCl(3))的 BE 值明显大于其乙烯类似物的 BE 值。AlCl(3)与 Pt(PR(3))(2)的配位键特征是 Pt 向 AlCl(3)的 σ 电荷转移(CT)。该配合物具有 T 形结构,与众所周知的 Pt(PMe(3))(2)(C(2)H(4))的 Y 形结构不同,尽管它们都是三配位的 Pt(0)配合物。这种 T 形结构是由于 Pt d(σ)轨道在 σ-CT 中重要参与的结果;由于 Pt d(σ)轨道能量随着 P-Pt-P 角的减小而降低,因此 T 形结构比 Y 形结构更有利于 σ-CT。Co(alcn)(2)(AlCl(3)) (alcn = 乙酰丙酮亚胺) 在此被理论预测为一种良好的金属配合物候选物,因为其配位键未受支持,其结合能计算值远大于 Pt(PCy(3))(2)(AlCl(3))。