Suppr超能文献

一种视图和光照不变的图像匹配新算法。

A novel algorithm for view and illumination invariant image matching.

机构信息

National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.

出版信息

IEEE Trans Image Process. 2012 Jan;21(1):229-40. doi: 10.1109/TIP.2011.2160271. Epub 2011 Jun 27.

Abstract

The challenges in local-feature-based image matching are variations of view and illumination. Many methods have been recently proposed to address these problems by using invariant feature detectors and distinctive descriptors. However, the matching performance is still unstable and inaccurate, particularly when large variation in view or illumination occurs. In this paper, we propose a view and illumination invariant image-matching method. We iteratively estimate the relationship of the relative view and illumination of the images, transform the view of one image to the other, and normalize their illumination for accurate matching. Our method does not aim to increase the invariance of the detector but to improve the accuracy, stability, and reliability of the matching results. The performance of matching is significantly improved and is not affected by the changes of view and illumination in a valid range. The proposed method would fail when the initial view and illumination method fails, which gives us a new sight to evaluate the traditional detectors. We propose two novel indicators for detector evaluation, namely, valid angle and valid illumination, which reflect the maximum allowable change in view and illumination, respectively. Extensive experimental results show that our method improves the traditional detector significantly, even in large variations, and the two indicators are much more distinctive.

摘要

基于局部特征的图像匹配面临视角和光照变化的挑战。最近,许多方法已经被提出,通过使用不变特征检测器和独特描述符来解决这些问题。然而,匹配性能仍然不稳定和不准确,特别是当视角或光照发生较大变化时。在本文中,我们提出了一种视角和光照不变的图像匹配方法。我们迭代地估计图像的相对视角和光照关系,将一幅图像的视角转换到另一幅图像,并对其光照进行归一化,以实现准确匹配。我们的方法不是旨在增加探测器的不变性,而是提高匹配结果的准确性、稳定性和可靠性。匹配性能得到了显著提高,并且不受有效范围内视角和光照变化的影响。当初始视角和光照方法失败时,所提出的方法会失败,这为我们评估传统探测器提供了一个新的视角。我们提出了两个用于检测器评估的新指标,即有效角度和有效光照,它们分别反映了视角和光照允许的最大变化。广泛的实验结果表明,我们的方法显著提高了传统探测器的性能,即使在较大的变化下,而且这两个指标也更加明显。

相似文献

1
A novel algorithm for view and illumination invariant image matching.
IEEE Trans Image Process. 2012 Jan;21(1):229-40. doi: 10.1109/TIP.2011.2160271. Epub 2011 Jun 27.
2
Point matching under large image deformations and illumination changes.
IEEE Trans Pattern Anal Mach Intell. 2004 Jun;26(6):674-88. doi: 10.1109/TPAMI.2004.2.
3
Enhanced local texture feature sets for face recognition under difficult lighting conditions.
IEEE Trans Image Process. 2010 Jun;19(6):1635-50. doi: 10.1109/TIP.2010.2042645. Epub 2010 Feb 17.
4
Robust estimation of albedo for illumination-invariant matching and shape recovery.
IEEE Trans Pattern Anal Mach Intell. 2009 May;31(5):884-99. doi: 10.1109/TPAMI.2008.135.
5
Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.
Ultrasonics. 2010 Mar;50(3):373-86. doi: 10.1016/j.ultras.2009.09.001. Epub 2009 Sep 19.
6
Face recognition algorithms surpass humans matching faces over changes in illumination.
IEEE Trans Pattern Anal Mach Intell. 2007 Sep;29(9):1642-6. doi: 10.1109/TPAMI.2007.1107.
7
Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics.
IEEE Trans Pattern Anal Mach Intell. 2006 Mar;28(3):351-63. doi: 10.1109/TPAMI.2006.53.
8
Principal angles separate subject illumination spaces in YDB and CMU-PIE.
IEEE Trans Pattern Anal Mach Intell. 2009 Feb;31(2):351-63. doi: 10.1109/TPAMI.2008.200.
9
[Research on non-rigid medical image registration algorithm based on SIFT feature extraction].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2010 Aug;27(4):763-8, 784.
10
Face recognition system using multiple face model of hybrid Fourier feature under uncontrolled illumination variation.
IEEE Trans Image Process. 2011 Apr;20(4):1152-65. doi: 10.1109/TIP.2010.2083674. Epub 2010 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验