Trippa Lorenzo, Rosner Gary L, Müller Peter
Harvard School of Public Health and Department of Biostatistics, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
Biometrics. 2012 Mar;68(1):203-11. doi: 10.1111/j.1541-0420.2011.01623.x. Epub 2011 Jun 29.
We propose optimal choice of the design parameters for random discontinuation designs (RDD) using a Bayesian decision-theoretic approach. We consider applications of RDDs to oncology phase II studies evaluating activity of cytostatic agents. The design consists of two stages. The preliminary open-label stage treats all patients with the new agent and identifies a possibly sensitive subpopulation. The subsequent second stage randomizes, treats, follows, and compares outcomes among patients in the identified subgroup, with randomization to either the new or a control treatment. Several tuning parameters characterize the design: the number of patients in the trial, the duration of the preliminary stage, and the duration of follow-up after randomization. We define a probability model for tumor growth, specify a suitable utility function, and develop a computational procedure for selecting the optimal tuning parameters.
我们提出使用贝叶斯决策理论方法为随机撤药设计(RDD)选择最佳设计参数。我们考虑将RDD应用于评估细胞抑制剂活性的肿瘤学II期研究。该设计包括两个阶段。初步开放标签阶段用新药物治疗所有患者,并识别出可能敏感的亚组。随后的第二阶段对已识别亚组中的患者进行随机分组、治疗、随访并比较结果,随机分为接受新治疗或对照治疗。有几个调整参数可表征该设计:试验中的患者数量、初步阶段的持续时间以及随机分组后的随访持续时间。我们定义了肿瘤生长的概率模型,指定了合适的效用函数,并开发了一种计算程序来选择最佳调整参数。